A060723 a(n) is the denominator of r(n) where r(n) is the sequence of rational numbers defined by the recursion: r(0) = 0, r(1) = 1 and for n>1 r(n) = r(n-1) + r(n-2)/2. From this definition it is clear that a(n) is always a power of 2 (see A060755).
1, 1, 1, 2, 1, 4, 4, 8, 1, 16, 16, 32, 8, 64, 64, 128, 8, 256, 256, 512, 128, 1024, 1024, 2048, 256, 4096, 4096, 8192, 2048, 16384, 16384, 32768, 1024, 65536, 65536, 131072, 32768, 262144, 262144, 524288, 65536, 1048576, 1048576, 2097152
Offset: 0
Examples
The sequence r(n) begins 0, 1, 1, 3/2, 2, 11/4, 15/4, 41/8, 7, 153/16, 209/16, 571/32, 363/16, 2023/64, 2749/64, 7521/128, 5135/64, ...
Programs
-
Mathematica
Denominator[RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-1]+a[n-2]/2},a,{n,50}]] (* Harvey P. Dale, Mar 07 2016 *) Table[Denominator[Simplify[((1/2(1 + Sqrt[3]))^x - (1/2(Sqrt[3] - 1))^x Cos[Pi x])/ Sqrt[3]]], {x, 0, 43}] (* Peter Luschny, Jun 02 2018 *)
Formula
r(n) = (((1/2)*(sqrt(3) + 1))^n - ((1/2)*(sqrt(3) - 1))^n * cos(Pi*n))/sqrt(3). - Peter Luschny, Jun 02 2018
Extensions
More terms from Vladeta Jovovic, Apr 24 2001
Comments