A060776 Smaller central (median) divisor of n!.
1, 1, 2, 4, 10, 24, 70, 192, 576, 1890, 6300, 21600, 78848, 294840, 1143072, 4572288, 18849600, 79968000, 348566400, 1559376000, 7147140000, 33522128640, 160758097500, 787652812800, 3938264064000, 20080974513600, 104348440350000, 552160113120000
Offset: 1
Keywords
Examples
Divisors of 6!=720 are {1,2,3,4,5,6,...,24,30,...,360,720}. a(6)=24, the 15th divisor from 30 divisors of 720.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..140 (first 59 terms from Oleg Terentyev)
- Jean-Marie De Koninck and William Verreault, Arithmetic functions at factorial arguments, Publications de l'Institut Mathematique, Vol. 115, No. 129 (2024), pp. 45-76.
Programs
-
Mathematica
Table[ Part[ Divisors[ w! ], Floor[ DivisorSigma[ 0, n! ]/2 ] ], {w, a, b} ]
-
PARI
a(n) = if (n==1, 1, my(d=divisors(n!)); d[#d\2]); \\ Michel Marcus, Sep 16 2018
Formula
a(n) = n!/A060777(n). - David Wasserman, Jun 15 2002
Sum_{k=1..n} a(k) = sqrt(n!) * (1 + O(1/n^c)), where c < 1 is a positive constant (De Koninck and Verreault, 2024, p. 48, Theorem 2.1). - Amiram Eldar, Dec 10 2024
Extensions
More terms from David Wasserman, Jun 15 2002
a(27)-a(32) from M. F. Hasler, Sep 20 2011
Comments