cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060787 a(n) = 18*(n - 2)*(2*n - 5).

Original entry on oeis.org

0, 18, 108, 270, 504, 810, 1188, 1638, 2160, 2754, 3420, 4158, 4968, 5850, 6804, 7830, 8928, 10098, 11340, 12654, 14040, 15498, 17028, 18630, 20304, 22050, 23868, 25758, 27720, 29754, 31860, 34038, 36288, 38610, 41004, 43470, 46008, 48618, 51300, 54054, 56880, 59778
Offset: 2

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Apr 28 2001

Keywords

Comments

Except for first term Engel expansion of cosh(1/3); cf. A006784 for Engel expansion definition. - Benoit Cloitre, Mar 03 2002

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 341.
  • Henri Brocard and Timoléon Lemoyne, Courbes géométriques remarquables (courbes spéciales) Planes et Gauches. Tome I, Paris: Albert Blanchard, 1967 [First publ. 1919]; see p. 135.

Crossrefs

Cf. A006784.

Programs

  • Mathematica
    a[n_] := 18*(n-2)*(2*n-5); Array[a, 50, 2] (* Amiram Eldar, May 05 2025 *)
  • PARI
    a(n) = 18*(n - 2)*(2*n - 5) \\ Harry J. Smith, Jul 11 2009

Formula

G.f.: 18*x^3*(1 + 3*x)/(1 - x)^3. - Colin Barker, Feb 29 2012
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=3} 1/a(n) = log(2)/9.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi/36 - log(2)/18. (End)