cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060796 Upper central divisor of n-th primorial.

Original entry on oeis.org

2, 3, 6, 15, 55, 182, 715, 3135, 15015, 81345, 448630, 2733549, 17490603, 114388729, 785147363, 5708795638, 43850489690, 342503171205, 2803419704514, 23622001517543, 201817933409378, 1793779635410490, 16342166369958702, 154171363634898185, 1518410187442699518, 15259831781575946565
Offset: 1

Views

Author

Labos Elemer, Apr 27 2001

Keywords

Comments

Also: Write product of first n primes as x*y with x < y and x maximal; sequence gives value of y. Indeed, p(n)# = primorial(n) = A002110(n) is never a square for n >= 1; all exponents in the prime factorization are 1. Therefore primorial(n) has N = 2^n distinct divisors. Since this is an even number, the N divisors can be grouped in N/2 pairs {d(k), d(N+1-k)} with product equal to p(n)#. One of the two is always smaller and one is larger than sqrt(p(n)#). This sequence gives the (2^(n-1)+1)-th divisor, which is the smallest one larger than sqrt(p(n)#). - M. F. Hasler, Sep 20 2011

Examples

			n = 8, q(8) = 2*3*5*7*11*13*17*19 = 9699690. Its 128th and 129th divisors are {3094, 3135}: a(8) = 3135, and 3094 < A000196(9699690) = 3114 < 3135. [Corrected by _M. F. Hasler_, Sep 20 2011]
		

Crossrefs

Programs

  • Mathematica
    k = 1; Do[k *= Prime[n]; l = Divisors[k]; x = Length[l]; Print[l[[x/2 + 1]]], {n, 1, 24}] (* Ryan Propper, Jul 25 2005 *)
  • PARI
    A060796(n) = divisors(prod(k=1,n,prime(k)))[2^(n-1)+1] \\ Requires stack size > 2^(n+5). - M. F. Hasler, Sep 20 2011

Formula

a(n) = A033677(A002110(n)).
a(n) = A002110(n)/A060795(n). - M. F. Hasler, Mar 21 2022

Extensions

More terms from Ryan Propper, Jul 25 2005
a(24)-a(37) in b-file calculated from A182987 by M. F. Hasler, Sep 20 2011
a(38) from David A. Corneth, Mar 21 2022
a(39)-a(70) in b-file from Max Alekseyev, Apr 20 2022