cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060816 a(0) = 1; a(n) = (5*3^(n-1) - 1)/2 for n > 0.

Original entry on oeis.org

1, 2, 7, 22, 67, 202, 607, 1822, 5467, 16402, 49207, 147622, 442867, 1328602, 3985807, 11957422, 35872267, 107616802, 322850407, 968551222, 2905653667, 8716961002, 26150883007, 78452649022, 235357947067, 706073841202
Offset: 0

Views

Author

Jason Earls, Apr 29 2001

Keywords

Comments

From Erich Friedman's math magic page 2nd paragraph under "Answers" section.
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i,i] = 2,(i>1), A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^n*charpoly(A,-1). - Milan Janjic, Jan 26 2010
If n > 0 and H = hex number (A003215), then 9*H(a(n)) - 2 = H(a(n+1)), for example 9*H(2) - 2 = 9*19 - 2 = 169 = H(7). For n > 2, this is a subsequence of A017209, see formula. - Klaus Purath, Mar 31 2021
Consider the Tower of Hanoi puzzle of order n (i.e., with n rings to be moved). Label each ring with a distinct symbol from an alphabet of size n. Construct words by performing moves according to the standard rules of the puzzle, recording the corresponding symbol each time a ring is moved. To ensure finiteness, we forbid returning to any previously encountered state. Additionally, we impose the constraint that the same ring cannot be moved twice in succession. Then, a(n) is the number of distinct words that can be formed under these rules. - Thomas Baruchel, Jul 22 2025

Crossrefs

Cf. A005030 (first differences), A244762 (partial sums).

Programs

Formula

The following is a summary of formulas added over the past 18 years.
a(n) = A057198(n) - 1.
a(n) = 3*a(n-1) + 1; with a(0)=1, a(1)=2. - Jason Earls, Apr 29 2001
From Henry Bottomley, May 01 2001: (Start)
For n>0, a(n) = a(n-1)+5*3^(n-2) = a(n-1)+A005030(n-2).
For n>0, a(n) = (5*A003462(n)+1)/3. (End)
From Colin Barker, Apr 24 2012: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 2.
G.f.: (1-2*x+2*x^2)/((1-x)*(1-3*x)). (End)
a(n+1) = A134931(n) + 1. - Philippe Deléham, Apr 14 2013
For n > 0, A008343(a(n)) = 0. - Dmitry Kamenetsky, Feb 14 2017
For n > 0, a(n) = floor(3^n*5/6). - M. F. Hasler, Apr 06 2019
From Klaus Purath, Mar 31 2021: (Start)
a(n) = A017209(a(n-2)), n > 2.
a(n) = 2 + Sum_{i = 0..n-2} A005030(i).
a(n+1)*a(n+2) = a(n)*a(n+3) + 20*3^n, n > 1.
a(n) = 3^n - A007051(n-1). (End)
E.g.f.: (5*exp(3*x) - 3*exp(x) + 4)/6. - Stefano Spezia, Aug 28 2023

Extensions

Edited by M. F. Hasler, Apr 06 2019 and by N. J. A. Sloane, Apr 09 2019