A060816 a(0) = 1; a(n) = (5*3^(n-1) - 1)/2 for n > 0.
1, 2, 7, 22, 67, 202, 607, 1822, 5467, 16402, 49207, 147622, 442867, 1328602, 3985807, 11957422, 35872267, 107616802, 322850407, 968551222, 2905653667, 8716961002, 26150883007, 78452649022, 235357947067, 706073841202
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Erich Friedman, Math. Magic
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{4,-3},{1,2,7},30] (* Harvey P. Dale, Nov 15 2022 *)
-
PARI
A060816(n)=if(n, 3^n*5\6, 1) \\ M. F. Hasler, Apr 06 2019
Formula
The following is a summary of formulas added over the past 18 years.
a(n) = A057198(n) - 1.
a(n) = 3*a(n-1) + 1; with a(0)=1, a(1)=2. - Jason Earls, Apr 29 2001
From Henry Bottomley, May 01 2001: (Start)
For n>0, a(n) = a(n-1)+5*3^(n-2) = a(n-1)+A005030(n-2).
For n>0, a(n) = (5*A003462(n)+1)/3. (End)
From Colin Barker, Apr 24 2012: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 2.
G.f.: (1-2*x+2*x^2)/((1-x)*(1-3*x)). (End)
a(n+1) = A134931(n) + 1. - Philippe Deléham, Apr 14 2013
For n > 0, A008343(a(n)) = 0. - Dmitry Kamenetsky, Feb 14 2017
For n > 0, a(n) = floor(3^n*5/6). - M. F. Hasler, Apr 06 2019
From Klaus Purath, Mar 31 2021: (Start)
a(n) = A017209(a(n-2)), n > 2.
a(n) = 2 + Sum_{i = 0..n-2} A005030(i).
a(n+1)*a(n+2) = a(n)*a(n+3) + 20*3^n, n > 1.
a(n) = 3^n - A007051(n-1). (End)
E.g.f.: (5*exp(3*x) - 3*exp(x) + 4)/6. - Stefano Spezia, Aug 28 2023
Extensions
Edited by M. F. Hasler, Apr 06 2019 and by N. J. A. Sloane, Apr 09 2019
Comments