cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060828 Size of the Sylow 3-subgroup of the symmetric group S_n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 9, 81, 81, 81, 243, 243, 243, 729, 729, 729, 6561, 6561, 6561, 19683, 19683, 19683, 59049, 59049, 59049, 1594323, 1594323, 1594323, 4782969, 4782969, 4782969, 14348907, 14348907, 14348907, 129140163, 129140163, 129140163, 387420489
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001

Keywords

Examples

			a(3) = 3 because in S_3 the Sylow 3-subgroup is the subgroup generated by the 3-cycles (123) and (132), its order is 3.
		

Crossrefs

Programs

  • Mathematica
    (* By the formula: *) Table[3^IntegerExponent[n!, 3], {n, 0, 40}] (* Bruno Berselli, Aug 05 2013 *)
  • PARI
    for (n=0, 200, s=0; d=3; while (n>=d, s+=n\d; d*=3); write("b060828.txt", n, " ", 3^s)) \\ Harry J. Smith, Jul 12 2009
    
  • Sage
    def A060828(n):
        A004128 = lambda n: A004128(n//3) + n if n > 0 else 0
        return 3^A004128(n//3)
    [A060828(i) for i in (0..39)]  # Peter Luschny, Nov 16 2012

Formula

a(n) = 3^A054861(n) = 3^(floor(n/3) + floor(n/9) + floor(n/27) + floor(n/81) + ...).
a(n) = Product_{i=1..n} A038500(i). - Tom Edgar, Apr 30 2014
a(n) = 3^(n/2 + O(log n)). - Charles R Greathouse IV, Aug 05 2015

Extensions

More terms from N. J. A. Sloane, Jul 03 2008