cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060859 Powerful numbers of the form k^2 - 1.

Original entry on oeis.org

8, 288, 675, 9800, 235224, 332928, 1825200, 11309768, 384199200, 592192224, 4931691075, 13051463048, 221322261600, 443365544448, 865363202000, 8192480787000, 13325427460800, 15061377048200, 511643454094368
Offset: 1

Views

Author

Labos Elemer, May 04 2001

Keywords

Comments

If k^2-1 is a term, then k-1 is a term of A335851. - Amiram Eldar, Feb 23 2024

Examples

			From _Jon E. Schoenfield_, Sep 06 2017: (Start)
n     k        a(n) =  k^2 - 1          a(n) + 1 = k^2
=   ===   =========================   ==================
1     3        8 = 2^3                  3^2 = 3^2
2    17      288 = 2^5 * 3^2           17^2 = 17^2
3    26      675 = 5^2 * 3^3           26^2 = 2^2 * 13^2
4    99     9800 = 2^3 * 5^2 * 7^2     99^2 = 3^4 * 11^2
5   485   235224 = 2^3 * 3^5 * 11^2   485^2 = 5^2 * 97^2
6   577   332928 = 2^7 * 3^2 * 17^2   577^2 = 577^2
(End)
		

Crossrefs

Proper subset of A060355.

Programs

  • Mathematica
    Select[Range[10^6]^2 - 1, Min[FactorInteger[#][[All, -1]]] > 1 &] (* Michael De Vlieger, Sep 05 2017 *)
    seq[max_] := Module[{p = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]], q, i}, q = Union[p, 2*Select[p, # <= max && OddQ[#] &]]; i = Position[Differences[q], 2] // Flatten; q[[i]]*(q[[i]] + 2)]; seq[10^10] (* Amiram Eldar, Feb 23 2024 *)
  • PARI
    isok(n) = issquare(n+1) && ispowerful(n); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = k^2 - 1 and a(n) + 1 = k^2 are consecutive powerful numbers.
a(n) = A060860(n)^2 - 1. - Amiram Eldar, Feb 23 2024

Extensions

Corrected and extended by Jud McCranie, Jul 08 2001
Offset corrected by Donovan Johnson, Nov 15 2011
Name simplified by Jon E. Schoenfield, Nov 30 2023