cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060882 a(n) = n-th primorial (A002110) minus next prime.

Original entry on oeis.org

-1, -1, 1, 23, 199, 2297, 30013, 510491, 9699667, 223092841, 6469693199, 200560490093, 7420738134769, 304250263527167, 13082761331669983, 614889782588491357, 32589158477190044671, 1922760350154212639009
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

It is well-known and easy to prove (see Honsbeger) that a(n) > 0 for n > 1. - N. J. A. Sloane, Jul 05 2009
Terms are pairwise coprime with very high probability. I didn't find terms which are pairwise noncoprime, although it may be a case of the "strong law of small numbers." - Daniel Forgues, Apr 23 2012

References

  • R. Honsberger, Mathematical Diamonds, MAA, 2003, see p. 79. [Added by N. J. A. Sloane, Jul 05 2009]

Crossrefs

Programs

  • Maple
    pp:=n->mul(ithprime(i),i=1..n);
    [seq(pp(n)-ithprime(n+1),n=1..20)];
  • Mathematica
    Join[{-1},With[{nn=20},#[[1]]-#[[2]]&/@Thread[{FoldList[Times,1, Prime[ Range[nn]]],Prime[Range[nn+1]]}]]] (* Harvey P. Dale, May 10 2013 *)
  • PARI
    { n=-1; m=1; forprime (p=2, prime(101), write("b060882.txt", n++, " ", m - p); m*=p; ) } \\ Harry J. Smith, Jul 13 2009
    
  • Python
    from sympy import prime, primorial
    def A060882(n): return primorial(n)-prime(n+1) if n else -1 # Chai Wah Wu, Feb 25 2023