A060886 a(n) = n^4 - n^2 + 1.
1, 1, 13, 73, 241, 601, 1261, 2353, 4033, 6481, 9901, 14521, 20593, 28393, 38221, 50401, 65281, 83233, 104653, 129961, 159601, 194041, 233773, 279313, 331201, 390001, 456301, 530713, 613873, 706441, 809101, 922561, 1047553, 1184833, 1335181, 1499401
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- John Elias, Illustration of initial terms: chain-linked squares
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^4 - n^2 + 1: n in [0..40]]; /* or */ I:=[1,1,13, 73,241]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 20 2015
-
Maple
A060886 := proc(n) numtheory[cyclotomic](12,n) ; end proc: seq(A060886(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
-
Mathematica
(Range[0, 29]^2 - 1/2)^2 + 3/4 (* Alonso del Arte, Dec 20 2015 *) Table[n^4 - n^2 + 1, {n, 0, 25}] (* Vincenzo Librandi, Dec 20 2015 *)
-
PARI
a(n) = n^4 - n^2 + 1; \\ Harry J. Smith, Jul 14 2009
Formula
a(n) = Phi_12(n), where Phi_k is the k-th cyclotomic polynomial.
G.f.: (1-4*x+18*x^2+8*x^3+x^4)/(1-x)^5. - Colin Barker, Apr 21 2012
a(n) = (n^2 - 1/2)^2 + 3/4. - Alonso del Arte, Dec 20 2015
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), for n>4. - Vincenzo Librandi, Dec 20 2015
Comments