cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060886 a(n) = n^4 - n^2 + 1.

Original entry on oeis.org

1, 1, 13, 73, 241, 601, 1261, 2353, 4033, 6481, 9901, 14521, 20593, 28393, 38221, 50401, 65281, 83233, 104653, 129961, 159601, 194041, 233773, 279313, 331201, 390001, 456301, 530713, 613873, 706441, 809101, 922561, 1047553, 1184833, 1335181, 1499401
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

All positive divisors of a(n) are congruent to 1, modulo 12. Proof: If p is an odd prime different from 3 then n^4 - n^2 + 1 = 0 (mod p) implies: (a) (2n^2 - 1)^2 = -3 (mod p), whence p = 1 (mod 6); and (b) (n^2 - 1)^2 = -n^2 (mod p), whence p = 1 (mod 4). - Nick Hobson, Nov 13 2006
Appears to be the number of distinct possible sums of a set of n distinct integers between 1 and n^3. Checked up to n = 4. - Dylan Hamilton, Sep 21 2010

Programs

  • Magma
    [n^4 - n^2 + 1: n in [0..40]]; /* or */ I:=[1,1,13, 73,241]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 20 2015
  • Maple
    A060886 := proc(n)
            numtheory[cyclotomic](12,n) ;
    end proc:
    seq(A060886(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
  • Mathematica
    (Range[0, 29]^2 - 1/2)^2 + 3/4 (* Alonso del Arte, Dec 20 2015 *)
    Table[n^4 - n^2 + 1, {n, 0, 25}] (* Vincenzo Librandi, Dec 20 2015 *)
  • PARI
    a(n) = n^4 - n^2 + 1; \\ Harry J. Smith, Jul 14 2009
    

Formula

a(n) = Phi_12(n), where Phi_k is the k-th cyclotomic polynomial.
G.f.: (1-4*x+18*x^2+8*x^3+x^4)/(1-x)^5. - Colin Barker, Apr 21 2012
a(n) = (n^2 - 1/2)^2 + 3/4. - Alonso del Arte, Dec 20 2015
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), for n>4. - Vincenzo Librandi, Dec 20 2015