cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060897 Number of walks of length n on square lattice, starting at origin, staying in first and third quadrants.

Original entry on oeis.org

1, 4, 12, 44, 144, 528, 1808, 6676, 23536, 87568, 315136, 1180680, 4314560, 16263896, 60138816, 227899484, 850600944, 3238194560, 12177384544, 46542879384, 176110444736, 675431779856, 2568878867200, 9882068082112, 37747540858240, 145593279888736, 558190182662144
Offset: 0

Views

Author

David W. Wilson, May 05 2001

Keywords

Comments

Is there a formula analogous to the (conjectured) formula for A060900?
Could be broken into the number of walks that are constrained to a quadrant and the number that cross the origin. (I.e., 2*A005566(n) + 2*A005566(n-2)*A005568(1) + 2*A005566(n-4)*A005568(2) + ... + All terms that cross the origin twice + three times + ... + Cross floor(n/2) times.) - Benjamin Phillabaum, Mar 13 2011

Crossrefs

Programs

  • PARI
    \\ here B is A005566 and C is aerated A005568 as g.f.'s.
    B(n)={sum(n=0, n, x^n*binomial(n, n\2)*binomial(n+1, (n+1)\2), O(x*x^n))}
    C(n)={sum(n=0, (n+1)\2, x^(2*n)*binomial(2*n,n)*binomial(2*n+2,n+1)/((n+1)*(n+2)), O(x*x^n))}
    seq(n) = {Vec( 1 + 2*(B(n)-1)/(2-C(n)) )} \\ Andrew Howroyd, Jan 05 2023

Formula

G.f.: 1 + 2*(B(x)-1)/(2 - C(x^2)) where B(x) is the g.f. of A005566 and C(x) is the g.f. of A005568. - Andrew Howroyd, Jan 05 2023