A060897 Number of walks of length n on square lattice, starting at origin, staying in first and third quadrants.
1, 4, 12, 44, 144, 528, 1808, 6676, 23536, 87568, 315136, 1180680, 4314560, 16263896, 60138816, 227899484, 850600944, 3238194560, 12177384544, 46542879384, 176110444736, 675431779856, 2568878867200, 9882068082112, 37747540858240, 145593279888736, 558190182662144
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..750 (first 251 terms from Sean A. Irvine)
Programs
-
PARI
\\ here B is A005566 and C is aerated A005568 as g.f.'s. B(n)={sum(n=0, n, x^n*binomial(n, n\2)*binomial(n+1, (n+1)\2), O(x*x^n))} C(n)={sum(n=0, (n+1)\2, x^(2*n)*binomial(2*n,n)*binomial(2*n+2,n+1)/((n+1)*(n+2)), O(x*x^n))} seq(n) = {Vec( 1 + 2*(B(n)-1)/(2-C(n)) )} \\ Andrew Howroyd, Jan 05 2023
Formula
G.f.: 1 + 2*(B(x)-1)/(2 - C(x^2)) where B(x) is the g.f. of A005566 and C(x) is the g.f. of A005568. - Andrew Howroyd, Jan 05 2023
Comments