cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060920 Bisection of Fibonacci triangle A037027: even-indexed members of column sequences of A037027 (not counting leading zeros).

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 13, 20, 9, 1, 34, 71, 51, 14, 1, 89, 235, 233, 105, 20, 1, 233, 744, 942, 594, 190, 27, 1, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 1597, 6865, 12473, 12402, 7285, 2534, 490, 44, 1, 4181, 20284, 42447, 49963, 36122, 16407, 4578, 726, 54, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Companion triangle (odd-indexed members) A060921.

Examples

			Triangle begins as:
      1;
      2,     1;
      5,     5,      1;
     13,    20,      9,      1;
     34,    71,     51,     14,      1;
     89,   235,    233,    105,     20,     1;
    233,   744,    942,    594,    190,    27,     1;
    610,  2285,   3522,   2860,   1295,   315,    35,    1;
   1597,  6865,  12473,  12402,   7285,  2534,   490,   44,    1;
   4181, 20284,  42447,  49963,  36122, 16407,  4578,  726,   54,  1;
  10946, 59155, 140109, 190570, 163730, 91959, 33705, 7776, 1035, 65, 1;
		

Crossrefs

Column sequences: A001519 (k=0), A054444 (k=1), A061178 (k=2), A061179 (k=3), A061180 (k=4), A061181 (k=5).

Programs

  • Magma
    A060920:= func< n,k | (&+[Binomial(2*n-k-j, j)*Binomial(2*n-k-2*j, k): j in [0..2*n-k]]) >;
    [A060920(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
    
  • Mathematica
    A060920[n_, k_]:= Sum[Binomial[2*n-k-j, j]*Binomial[2*n-k-2*j, k], {j,0,2*n-k}];
    Table[A060920[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
  • Sage
    def A060920(n,k): return sum(binomial(2*n-k-j, j)*binomial(2*n-k-2*j, k) for j in (0..2*n-k))
    flatten([[A060920(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021

Formula

T(n, k) = A037027(2*n-k, k).
T(n, k) = ((2*(n-k) + 1)*A060921(n-1, k-1) + 4*n*T(n-1, k-1))/(5*k), n >= k >= 1.
T(n, 0) = F(n)^2 + F(n+1)^2 = A001519(n), with the Fibonacci numbers F(n) = A000045(n).
Sum_{k=0..n} T(n, k) = (2^(2*n + 1) + 1)/3 = A007583(n).
G.f. for column m >= 0: x^m*pFe(m+1, x)/(1-3*x+x^2)^(m+1), where pFe(n, x) := Sum_{m=0..n} A061176(n, m)*x^m (row polynomials of signed triangle A061176).
G.f.: (1-x*(1+y))/(1 - (3+2*y)*x + (1+y)^2*x^2). - Vladeta Jovovic, Oct 11 2003