cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060929 Second convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 9, 39, 120, 315, 753, 1687, 3612, 7470, 15040, 29634, 57366, 109421, 206115, 384105, 709152, 1298613, 2360943, 4264835, 7659870, 13686456, 24340184, 43102644, 76031100, 133636825, 234116493, 408900987
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,9,39,120,315,753]; [n le 6 select I[n] else 3*Self(n-1) - 5*Self(n-3) + 3*Self(n-5) + Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[((1 + 2*x)/(1 - x - x^2))^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3,0,-5,0,3,1}, {1,9,39,120,315,753}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    x='x+O('x^30); Vec(((1+2*x)/(1-x-x^2))^3) \\ G. C. Greubel, Dec 21 2017
    

Formula

G.f.: ((1+2*x)/(1-x-x^2))^3.
a(n) = A060922(n+2, 2) (third column of Lucas triangle).
a(n) = (n+1)*((5*n+4)*L(n+2) + (5*n-2)*L(n+1))/10, n >= 1, with the Lucas numbers L(n)=A000032(n)=A000204(n), n >= 1.