A060930 Third convolution of Lucas numbers A000032(n+1), n >= 0.
1, 12, 70, 280, 905, 2568, 6666, 16220, 37580, 83780, 181074, 381488, 786715, 1593160, 3176210, 6246732, 12139859, 23344760, 44471340, 84005640, 157483176, 293201912, 542468100, 997906400, 1826073525
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-8,5,8,-2,-4,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( ((1+2*x)/(1-x-x^2))^4 )); // G. C. Greubel, Apr 08 2021 -
Mathematica
Table[((25*n^3+90*n^2+95*n+6)*LucasL[n+4] -12*(5*n^2+10*n-3)*LucasL[n+2])/150, {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
-
Sage
def A060930_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( ((1+2*x)/(1-x-x^2))^4 ).list() A060930_list(40) # G. C. Greubel, Apr 08 2021