A060931 Fourth convolution of Lucas numbers A000032(n+1), n >= 0.
1, 15, 110, 545, 2120, 7043, 20965, 57560, 148545, 365045, 862224, 1970905, 4382820, 9520315, 20265665, 42385132, 87284120, 177293730, 355738710, 705980760, 1387213926, 2701362950, 5217448800, 10001654350
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-10,15,11,-15,-10,5,5,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( ((1+2*x)/(1-x-x^2))^5 )); // G. C. Greubel, Apr 08 2021 -
Mathematica
Table[((n+1)/120)*((5*n^3+5*n^2-10*n+72)*LucasL[n+5] + 4*(5*n^2+10*n-24)*LucasL[n+ 4]), {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
-
Sage
def A060931_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( ((1+2*x)/(1-x-x^2))^5 ).list() A060931_list(40) # G. C. Greubel, Apr 08 2021