A061013 Numbers k such that (product of digits of k) is divisible by (sum of digits of k), where 0's are not permitted.
1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 36, 44, 63, 66, 88, 123, 132, 138, 145, 154, 159, 167, 176, 183, 189, 195, 198, 213, 224, 231, 235, 242, 246, 253, 257, 264, 268, 275, 279, 286, 297, 312, 318, 321, 325, 333, 345, 347, 352, 354, 357, 369, 374, 375, 381, 396, 415
Offset: 1
Examples
1998 is perfect since 1*9*9*8/(1+9+9+8) = 24.
References
- H. Herles, Reformstau, Gefuehlsstau, Verkehrsstau. Generalanzeiger, 12/31/1997, p. V.
- H. Muller-Merbach and L. Logelix, Perfekte Jahre, Technologie und Management, Vol. 42, 1993, No. 1, p. 47 and No. 2, p. 95.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- H. Muller-Merbach, Wunsche für das "perfekte Jahr" 1998
Programs
-
Maple
for n from 1 to 3000 do a := convert(n,base,10):s := add(a[i],i=1..nops(a)):p := mul(a[i],i=1..nops(a)): if p<>0 and p mod s=0 then printf(`%d,`,n):fi:od:
-
Mathematica
Select[Range[415], FreeQ[x = IntegerDigits[#], 0] && Divisible[Times @@ x, Plus @@ x] &] (* Jayanta Basu, Jul 13 2013 *)
-
PARI
is(n) = my(d = digits(n)); vd = vecprod(d); vd != 0 && vd % vecsum(d) == 0 \\ David A. Corneth, Mar 15 2021
-
Python
from math import prod def ok(n): d = list(map(int, str(n))) pod, sod = prod(d), sum(d) return pod and pod%sod == 0 print([k for k in range(416) if ok(k)]) # Michael S. Branicky, Mar 28 2022
Extensions
More terms from Larry Reeves (larryr(AT)acm.org) and Vladeta Jovovic, Jun 07 2001
Comments