A306461 Number T(n,k) of occurrences of k in a (signed) displacement set of a permutation of [n]; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
1, 1, 1, 1, 2, 3, 4, 3, 2, 6, 10, 13, 15, 13, 10, 6, 24, 42, 56, 67, 76, 67, 56, 42, 24, 120, 216, 294, 358, 411, 455, 411, 358, 294, 216, 120, 720, 1320, 1824, 2250, 2612, 2921, 3186, 2921, 2612, 2250, 1824, 1320, 720, 5040, 9360, 13080, 16296, 19086, 21514, 23633, 25487, 23633, 21514, 19086, 16296, 13080, 9360, 5040
Offset: 1
Examples
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement sets {p(i)-i, i=1..3}: {0}, {-1,0,1}, {-1,0,1}, {-2,1}, {-1,2}, {-2,0,2}, respectively. Numbers -2 and 2 occur twice, -1 and 1 occur thrice, and 0 occurs four times. So row n=3 is [2, 3, 4, 3, 2]. Triangle T(n,k) begins: : 1 ; : 1, 1, 1 ; : 2, 3, 4, 3, 2 ; : 6, 10, 13, 15, 13, 10, 6 ; : 24, 42, 56, 67, 76, 67, 56, 42, 24 ; : 120, 216, 294, 358, 411, 455, 411, 358, 294, 216, 120 ;
Links
- Alois P. Heinz, Rows n = 1..142, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d), add(b(s minus {i}, d union {n-i}), i=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, {})): seq(T(n), n=1..8); # second Maple program: T:= (n, k)-> -add((-1)^j*binomial(n-abs(k), j)*(n-j)!, j=1..n): seq(seq(T(n, k), k=1-n..n-1), n=1..9);
-
Mathematica
T[n_, k_] := -Sum[(-1)^j Binomial[n-Abs[k], j] (n-j)!, {j, 1, n}]; Table[Table[T[n, k], {k, 1-n, n-1}], {n, 1, 9}] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *)
Comments