cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061034 Maximal number of subgroups in an Abelian group with n elements.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 16, 6, 4, 2, 10, 2, 4, 4, 67, 2, 12, 2, 10, 4, 4, 2, 32, 8, 4, 28, 10, 2, 8, 2, 374, 4, 4, 4, 30, 2, 4, 4, 32, 2, 8, 2, 10, 12, 4, 2, 134, 10, 16, 4, 10, 2, 56, 4, 32, 4, 4, 2, 20, 2, 4, 12, 2825, 4, 8, 2, 10, 4, 8, 2, 96, 2, 4, 16, 10, 4, 8, 2, 134, 212, 4, 2
Offset: 1

Views

Author

Ola Veshta (olaveshta(AT)my-deja.com), May 26 2001

Keywords

Comments

a(n) is multiplicative: if m and n are relatively prime then a(m*n) = a(n) * a(m). For n >= 2, a(n)>=2 with equality iff n is prime.

Examples

			a(16) = 67: C16 has 5 subgroups, C2 X C8 has 11 subgroups, (C2)^2 X C4 has 27 subgroups, (C2)^4 has 67 subgroups, (C4)^2 has 15 subgroups.
		

Crossrefs

Programs

  • PARI
    { A061034(n) = my(f=factorint(n)); prod(i=1,#f~, vecmax( apply( x->numsubgrp(f[i,1],x), partitions(f[i,2]) ) ) ); } \\ See Alekseyev link for numsubgrp(), Max Alekseyev, 2008

Formula

(C_2)^m has A006116(m) subgroups, so this is a lower bound if n is a power of 2 (e.g. a(16) >= 67). - N. J. A. Sloane, Dec 01 2007

Extensions

More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Jun 13 2003