cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061076 a(n) is the sum of the products of the digits of all the numbers from 1 to n.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 90, 92, 96, 102, 110, 120, 132, 146, 162, 180, 180, 183, 189, 198, 210, 225, 243, 264, 288, 315, 315, 319, 327, 339, 355, 375, 399, 427, 459, 495, 495, 500, 510, 525, 545, 570, 600, 635
Offset: 1

Views

Author

Amarnath Murthy, Apr 14 2001

Keywords

Comments

What is the asymptotic behavior of this sequence? a(n) = a(n+1) for almost all n. A weak upper bound: a(n) << n^1.91. - Charles R Greathouse IV, Jan 13 2012
A check was done for k in {i^j | 1 <= i <= 10 AND 1 <= j <= 100}. For all these values, a(k) < k^1.733. Another check for k in {i^j | 101 <= i <= 110 AND 101 <= j <= 200} gave a(k) < k^1.65324. For k in {i | 10^6 <= i <= 10^7}, a(k) < k^1.6534. So I ask: is it true that a(n) < n^1.733 and a(n) -> n^(1.65323 + o(1)), or about n^(log(45)/log(10) + o(1))? - David A. Corneth, May 17 2016
For n = 10^(k-1), the closed-form formula from Mihai Teodor (see Formula section) gives a(n) = (45^k - 45)/44, so lim_{n->oo} log(a(n))/log_10(n) = log(45) = 3.80666248977.... - Jon E. Schoenfield, Apr 10 2022
For k >= 1, a(10^k-1) = a(10^k) = ... = a(10*R_k) where R = A002275; so there is a run of 10*R_{k-1} + 2 = A047855(k) consecutive terms equal to (45/44)*(45^k-1) when n runs from 10^k-1 up to 10*R_k, this is because those numbers have one or more 0's. Example: first runs with 2, 12, 112, 1112, ... consecutive terms equal to 45, 2070, 93195, 4193820, ... start at 9, 99, 999, 9999, ... and end at 10, 110, 1110, 11110, ... - Bernard Schott, Oct 18 2022

Examples

			a(9) = a(10) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1*0 = 1+2+3+4+5+6+7+8+9 = 45.
		

References

  • Amarnath Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.

Crossrefs

Programs

  • Maple
    A007954:= n -> convert(convert(n,base,10),`*`):
    ListTools:-PartialSums(map(A007954,[$1..100])); # Robert Israel, May 17 2016
  • Mathematica
    Accumulate[Times@@IntegerDigits[#]& /@ Range[100]]
  • PARI
    pd(n) = my(d = digits(n)); prod(i=1, #d, d[i]);
    a(n) = sum(k=1, n, pd(k)); \\ Michel Marcus, Feb 01 2015
    
  • PARI
    a(n) = {n=digits(n); p=1; d=#n; for(i=1,#n,if(n[i]==0,d=i-1;break));
    (45/44) * (45^(#n-1)-1) + sum(i=1,d,p*=n[i]; p * (n[i]-1) * (45/44) * (45^(#n -i) - 45^(#n-i-1)) / 2)+p*(d==#n)} \\ David A. Corneth, May 17 2016
    
  • Python
    from math import prod
    def A061076(n): return sum(prod(int(d) for d in str(i)) for i in range(1,n+1)) # Chai Wah Wu, Mar 21 2022
  • Sage
    def A061076(n):
        p = 0
        i = 0
        while i < n + 1:
            p += prod(int(digit) for digit in str(i))
            i += 1
        return p # Daria Micovic, Apr 13 2016
    

Formula

a(n) = Sum_{k = 1..n} (product of the digits of k).
a(10^k-1) = (45/44)*(45^k-1). - Giovanni Resta, Oct 18 2012
From Robert Israel, May 17 2016: (Start)
Partial sums of A007954.
G.f.: (1-x)^(-1) * Sum_{n>=0} Product_{j=0..n} Sum_{k=1..9} k * x^(k*10^j).
G.f. satisfies A(x) = (x + 2*x^2 + ... + 9*x^9)*(1+(1-x^10)*A(x^10))/(1-x).
(End)
Let b(1), b(2), ..., b(k) be the digits of the base-10 expansion of n: n = b(1)*10^(k-1) + b(2)*10^(k-2) + ... + b(k). Then a(n) = b(1)*b(2)*...*b(k) + (45^k-45)/44 + (1/2)*Sum_{i=1..k} b(1)*b(2)*...*b(i)*(b(i)-1)*45^(k-i). - Mihai Teodor, Apr 09 2022

Extensions

Corrected and extended by Matthew Conroy, Apr 16 2001