cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061077 a(n) is the sum of the products of the digits of the first n odd numbers.

Original entry on oeis.org

1, 4, 9, 16, 25, 26, 29, 34, 41, 50, 52, 58, 68, 82, 100, 103, 112, 127, 148, 175, 179, 191, 211, 239, 275, 280, 295, 320, 355, 400, 406, 424, 454, 496, 550, 557, 578, 613, 662, 725, 733, 757, 797, 853, 925, 934, 961, 1006, 1069, 1150, 1150, 1150, 1150
Offset: 1

Views

Author

Amarnath Murthy, Apr 14 2001

Keywords

Examples

			a(7) = 1 + 3 + 5 + 7 + 9 + 1*1 + 1*3 = 29.
		

References

  • Amarnath Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.

Crossrefs

Programs

  • Mathematica
    Accumulate[Times @@@ IntegerDigits[Range[1, 99, 2]]] (* Luca Onnis, Mar 20 2022 *)
  • PARI
    pd(n) = my(d = digits(n)); prod(i=1, #d, d[i]);
    a(n) = sum(k=1, n, pd(2*k-1)); \\ Michel Marcus, Feb 01 2015
    
  • PARI
    a(n) = {m=digits(2*n - 1); p=1; d=#m; for(i=1, #m, if(m[i]==0, d=i-1; break));
    (25/44) * (45^(#m-1)-1) + sum(i=1, #m-1, (prod(j=1,#m-i-1,m[j])) * (m[#m-i]) * (m[#m-i]-1) * (5^(i + 1) * 9^(i-1)) / 2)+prod(k=1,#m-1,m[k])*(((m[#m]+1)^2)/4)} \\ Luca Onnis, Mar 20 2022
    
  • Python
    from math import prod
    def A061077(n): return sum(prod(int(d) for d in str(2*i+1)) for i in range(n)) # Chai Wah Wu, Mar 21 2022

Formula

a(n) = Sum_{k = 1..n} (product of the digits of 2k-1).
From Luca Onnis, Mar 20 2022: (Start)
a(5*10^n) = (25/44)*(45^(n+1)-1).
a(n) <= (25/44)*(45^(log(n/5)+1)-1) for all n.
a(n) ~ (5/4)*A061078(n) as n -> infinity. (End)

Extensions

More terms from Matthew Conroy, Apr 16 2001
Offset corrected by Charles R Greathouse IV, Feb 01 2015
Incorrect formula removed by Luca Onnis, Mar 20 2022