A061077 a(n) is the sum of the products of the digits of the first n odd numbers.
1, 4, 9, 16, 25, 26, 29, 34, 41, 50, 52, 58, 68, 82, 100, 103, 112, 127, 148, 175, 179, 191, 211, 239, 275, 280, 295, 320, 355, 400, 406, 424, 454, 496, 550, 557, 578, 613, 662, 725, 733, 757, 797, 853, 925, 934, 961, 1006, 1069, 1150, 1150, 1150, 1150
Offset: 1
Examples
a(7) = 1 + 3 + 5 + 7 + 9 + 1*1 + 1*3 = 29.
References
- Amarnath Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.
Links
- Luca Onnis, On the general Smarandache's sigma product of digits, arXiv:2203.07227 [math.GM], 2022.
Programs
-
Mathematica
Accumulate[Times @@@ IntegerDigits[Range[1, 99, 2]]] (* Luca Onnis, Mar 20 2022 *)
-
PARI
pd(n) = my(d = digits(n)); prod(i=1, #d, d[i]); a(n) = sum(k=1, n, pd(2*k-1)); \\ Michel Marcus, Feb 01 2015
-
PARI
a(n) = {m=digits(2*n - 1); p=1; d=#m; for(i=1, #m, if(m[i]==0, d=i-1; break)); (25/44) * (45^(#m-1)-1) + sum(i=1, #m-1, (prod(j=1,#m-i-1,m[j])) * (m[#m-i]) * (m[#m-i]-1) * (5^(i + 1) * 9^(i-1)) / 2)+prod(k=1,#m-1,m[k])*(((m[#m]+1)^2)/4)} \\ Luca Onnis, Mar 20 2022
-
Python
from math import prod def A061077(n): return sum(prod(int(d) for d in str(2*i+1)) for i in range(n)) # Chai Wah Wu, Mar 21 2022
Formula
a(n) = Sum_{k = 1..n} (product of the digits of 2k-1).
From Luca Onnis, Mar 20 2022: (Start)
a(5*10^n) = (25/44)*(45^(n+1)-1).
a(n) <= (25/44)*(45^(log(n/5)+1)-1) for all n.
a(n) ~ (5/4)*A061078(n) as n -> infinity. (End)
Extensions
More terms from Matthew Conroy, Apr 16 2001
Offset corrected by Charles R Greathouse IV, Feb 01 2015
Incorrect formula removed by Luca Onnis, Mar 20 2022