cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061078 Sum of the products of the digits of the first n positive even numbers.

Original entry on oeis.org

2, 6, 12, 20, 20, 22, 26, 32, 40, 40, 44, 52, 64, 80, 80, 86, 98, 116, 140, 140, 148, 164, 188, 220, 220, 230, 250, 280, 320, 320, 332, 356, 392, 440, 440, 454, 482, 524, 580, 580, 596, 628, 676, 740, 740, 758, 794, 848, 920, 920, 920, 920, 920, 920, 920, 922
Offset: 1

Views

Author

Amarnath Murthy, Apr 14 2001

Keywords

Comments

For n = (10^r)/2, a(n) is the sum of the r terms of the geometric progression with first term 20 and common ratio 45.

Examples

			a(5) = 2 + 4 + 6 + 8 + 1*0 = 20; (a(18)=116, not 114).
a(1199) = a(5^2*2^4*3 - 1) = ... = a(5^2*2^4*3 + 5) = a(1205). In fact, the number of "fives" is exactly equal to 1 = 2-1 (where 2 is the exponent of 5).
		

References

  • Amarnath Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.

Crossrefs

Programs

  • Mathematica
    Accumulate[Times@@@IntegerDigits[Range[2,120,2]]] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    pd(n) = my(d = digits(n)); prod(i=1, #d, d[i]);
    a(n) = sum(k=1, n, pd(2*k)); \\ Michel Marcus, Feb 01 2015
    
  • PARI
    a(n) = sum(k=1, n, vecprod(digits(2*k))); \\ Michel Marcus, Mar 13 2022
    
  • PARI
    a(n) = {t=digits(2*n); p=1; d=#t; for(i=1, #t, if(t[i]==0, d=i-1; break));
    (5/11) * (45^(#t-1)-1) + (sum(i=1, #t-1, ((prod(j=1,#t-i-1,t[j])) * (t[#t-i]) * (t[#t-i]-1) * 2 * (5^(i))* (9^(i-1)))))+(prod(k=1,#t-1,t[k]))*((((t[#t])^2))/4+(t[#t])/2)} \\ Luca Onnis, Mar 17 2022
    
  • Python
    from math import prod
    from itertools import accumulate
    def p(n): return prod(map(int, str(n)))
    def a(n): return sum(p(2*i) for i in range(1, n+1))
    def aupton(nn): return list(accumulate([pd(2*k) for k in range(1, nn+1)]))
    print(aupton(56)) # Michael S. Branicky, Mar 13 2022

Formula

From Luca Onnis, Mar 13 2022: (Start)
a(5*10^n-1) = a(5*10^n) = (5/11)*(45^(n+1)-1).
a(n) <= (5/11)*(45^(log((n+1)/5)+1)-1) for all n.
a(n) ~ (4/5)*A061077(n) as n -> infinity.
Conjecture: let a >= 1, b >= 0, where p is not a multiple of 2 nor 5. Then:
a(5^a*2^b*p-1) = a(5^a*2^b*p) = ... = a(5^a*2^b*p + 55...5) where the number of fives is equal to b if a > b, and is equal to a-1 if 1 <= a <= b. (End)

Extensions

Corrected and extended by Matthew Conroy, Apr 17 2001
Incorrect formula removed by Luca Onnis, Mar 13 2022
Name clarified by Chai Wah Wu, Mar 21 2022