A061078 Sum of the products of the digits of the first n positive even numbers.
2, 6, 12, 20, 20, 22, 26, 32, 40, 40, 44, 52, 64, 80, 80, 86, 98, 116, 140, 140, 148, 164, 188, 220, 220, 230, 250, 280, 320, 320, 332, 356, 392, 440, 440, 454, 482, 524, 580, 580, 596, 628, 676, 740, 740, 758, 794, 848, 920, 920, 920, 920, 920, 920, 920, 922
Offset: 1
Examples
a(5) = 2 + 4 + 6 + 8 + 1*0 = 20; (a(18)=116, not 114). a(1199) = a(5^2*2^4*3 - 1) = ... = a(5^2*2^4*3 + 5) = a(1205). In fact, the number of "fives" is exactly equal to 1 = 2-1 (where 2 is the exponent of 5).
References
- Amarnath Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.
Links
- Luca Onnis, Table of n, a(n) for n = 1..10000
- Luca Onnis, Mathematica prog which computes the first 10000 terms
- Luca Onnis On the general Smarandache's sigma product of digits, arXiv:2203.07227 [math.GM], 2022.
Programs
-
Mathematica
Accumulate[Times@@@IntegerDigits[Range[2,120,2]]] (* Harvey P. Dale, Jun 18 2021 *)
-
PARI
pd(n) = my(d = digits(n)); prod(i=1, #d, d[i]); a(n) = sum(k=1, n, pd(2*k)); \\ Michel Marcus, Feb 01 2015
-
PARI
a(n) = sum(k=1, n, vecprod(digits(2*k))); \\ Michel Marcus, Mar 13 2022
-
PARI
a(n) = {t=digits(2*n); p=1; d=#t; for(i=1, #t, if(t[i]==0, d=i-1; break)); (5/11) * (45^(#t-1)-1) + (sum(i=1, #t-1, ((prod(j=1,#t-i-1,t[j])) * (t[#t-i]) * (t[#t-i]-1) * 2 * (5^(i))* (9^(i-1)))))+(prod(k=1,#t-1,t[k]))*((((t[#t])^2))/4+(t[#t])/2)} \\ Luca Onnis, Mar 17 2022
-
Python
from math import prod from itertools import accumulate def p(n): return prod(map(int, str(n))) def a(n): return sum(p(2*i) for i in range(1, n+1)) def aupton(nn): return list(accumulate([pd(2*k) for k in range(1, nn+1)])) print(aupton(56)) # Michael S. Branicky, Mar 13 2022
Formula
From Luca Onnis, Mar 13 2022: (Start)
a(5*10^n-1) = a(5*10^n) = (5/11)*(45^(n+1)-1).
a(n) <= (5/11)*(45^(log((n+1)/5)+1)-1) for all n.
a(n) ~ (4/5)*A061077(n) as n -> infinity.
Conjecture: let a >= 1, b >= 0, where p is not a multiple of 2 nor 5. Then:
a(5^a*2^b*p-1) = a(5^a*2^b*p) = ... = a(5^a*2^b*p + 55...5) where the number of fives is equal to b if a > b, and is equal to a-1 if 1 <= a <= b. (End)
Extensions
Corrected and extended by Matthew Conroy, Apr 17 2001
Incorrect formula removed by Luca Onnis, Mar 13 2022
Name clarified by Chai Wah Wu, Mar 21 2022
Comments