cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061079 Denominators in the series for sin integral Si(x).

Original entry on oeis.org

1, 18, 600, 35280, 3265920, 439084800, 80951270400, 19615115520000, 6046686277632000, 2311256907767808000, 1072909785605898240000, 594596384994354462720000, 387780251083274649600000000, 293999475161295508340736000000, 256411097818451356681764864000000
Offset: 1

Views

Author

Frank Ellermann, May 29 2001

Keywords

Comments

Si(x) = Integral_{t=0..x} sin(t)/t dt.

Examples

			Si(x) = x/1 - x^3/18 + x^5/600 - x^7/35280 + x^9/3265920 -+ ...
		

References

  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 13th ed. 1974, ch. 4.3.7, integral 283 of 515.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 38, equation 38:6:1 at page 364.

Programs

Formula

a(n) = (2n-1)*(2n-1)!.
From Sergei N. Gladkovskii, Nov 29 2011: (Start)
E.g.f.: A(x) = Si(x) = x + x^3/(W(0) - x^2);
W(k) = x^2*(2*k+1) - (2*k+2)*(2*k+3)^2 + 2*x^2*(k+1)*(2*k+3)^3/W(k+1); (continued fraction).
E.g.f.: A(x) = Si(x) = x - x^3/18 + x^5/(12*W(0) + 18*(x^2) + 324);
W(k) = 16*k^3 + 68*k^2 + 84*k + 23 - x^2*(2*k+1)*(2*k+3)/(2+(2*k+4)*(2*k+5)^3/W(k+1)); (continued fraction).
E.g.f.: A(x) = Si(x) = x*W(0);
W(k) = 1 - x^2*(4*k+1)/((4*k+2)*(4*k+3)^2 - x^2*(4*k+2)*(4*k+3)^3/((4*k+3)*x^2 - (4*k+4)*(4*k+5)^2/W(k+1))); (continued fraction). (End)