cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061092 a(0) = 1; for n>0, a(n) = smallest prime of the form k*a(n-1) + 1.

Original entry on oeis.org

1, 2, 3, 7, 29, 59, 709, 2837, 22697, 590123, 1180247, 9441977, 169955587, 2719289393, 5438578787, 32631472723, 391577672677, 1566310690709, 50121942102689, 1503658263080671, 9021949578484027, 360877983139361081, 21652678988361664861, 476358937743956626943, 5716307252927479523317
Offset: 0

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Comments

Dirichlet proved that for every prime p there exists at least one prime of the form k*p + 1, hence the sequence is infinite.

Examples

			59 = 2*29 + 1; 709 = 12*59 + 1.
		

Crossrefs

Corresponding values of k are in A121799.

Programs

  • Mathematica
    a[1] = 2; a[n_] := a[n] = Block[{k = 1, p = a[n - 1]}, While[ !PrimeQ[k*p + 1], k++ ]; k*p + 1]; Table[ a[n], {n, 21}] (* Robert G. Wilson v, Nov 26 2004 *)
  • PARI
    for (n=0, 100, if (n>0, k=1; while (!isprime(k*a + 1), k++); a=k*a + 1, a=1); write("b061092.txt", n, " ", a)) \\ Harry J. Smith, Jul 17 2009

Extensions

More terms from Patrick De Geest, May 29 2001
Edited by Charles R Greathouse IV, Aug 02 2010