cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061100 Squares with digital root 4.

Original entry on oeis.org

4, 49, 121, 256, 400, 625, 841, 1156, 1444, 1849, 2209, 2704, 3136, 3721, 4225, 4900, 5476, 6241, 6889, 7744, 8464, 9409, 10201, 11236, 12100, 13225, 14161, 15376, 16384, 17689, 18769, 20164, 21316, 22801, 24025, 25600, 26896, 28561, 29929
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Examples

			256 = 16^2, 2 + 5 + 6 = 13, 1 + 3 = 4;
1849 = 43^2, 1 + 8 + 4 + 9 = 22, 2 + 2 = 4.
		

Crossrefs

Cf. A056991.

Programs

  • Maple
    seq(seq((a+9*k)^2,a=[2,7]),k=0..20); # Robert Israel, Jun 13 2018
  • Mathematica
    fdsQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==4; Select[Range[ 200]^2,fdsQ] (* Harvey P. Dale, Dec 15 2011 *)
  • PARI
    a(n)=(n\2*9-2*(-1)^n)^2 \\ Charles R Greathouse IV, Sep 21 2012

Formula

From Colin Barker, Feb 18 2013: (Start)
Conjecture:
a(n) = (16-72*n+81*n^2)/4 for n even;
a(n)=(25-90*n+81*n^2)/4 for n odd;
g.f.: -x*(4*x^4+45*x^3+64*x^2+45*x+4) / ((x-1)^3*(x+1)^2). (End)
Conjecture is true since x^2 == 4 (mod 9) if and only if x == 2 or 7 (mod 9). The odd-numbered terms are (2+9*k)^2 and the even-numbered terms are (7+9*k)^2. - Robert Israel, Jun 13 2018

Extensions

More terms from Harry J. Smith, Jul 18 2009