A061100 Squares with digital root 4.
4, 49, 121, 256, 400, 625, 841, 1156, 1444, 1849, 2209, 2704, 3136, 3721, 4225, 4900, 5476, 6241, 6889, 7744, 8464, 9409, 10201, 11236, 12100, 13225, 14161, 15376, 16384, 17689, 18769, 20164, 21316, 22801, 24025, 25600, 26896, 28561, 29929
Offset: 1
Examples
256 = 16^2, 2 + 5 + 6 = 13, 1 + 3 = 4; 1849 = 43^2, 1 + 8 + 4 + 9 = 22, 2 + 2 = 4.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Amarnath Murthy & Charles Ashbacher, Fabricating a perfect square with a given valid digit sum, in Generalized Partitions and New Ideas On Number Theory and Smarandache Sequences, pp. 154-156.
Crossrefs
Cf. A056991.
Programs
-
Maple
seq(seq((a+9*k)^2,a=[2,7]),k=0..20); # Robert Israel, Jun 13 2018
-
Mathematica
fdsQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==4; Select[Range[ 200]^2,fdsQ] (* Harvey P. Dale, Dec 15 2011 *)
-
PARI
a(n)=(n\2*9-2*(-1)^n)^2 \\ Charles R Greathouse IV, Sep 21 2012
Formula
From Colin Barker, Feb 18 2013: (Start)
Conjecture:
a(n) = (16-72*n+81*n^2)/4 for n even;
a(n)=(25-90*n+81*n^2)/4 for n odd;
g.f.: -x*(4*x^4+45*x^3+64*x^2+45*x+4) / ((x-1)^3*(x+1)^2). (End)
Conjecture is true since x^2 == 4 (mod 9) if and only if x == 2 or 7 (mod 9). The odd-numbered terms are (2+9*k)^2 and the even-numbered terms are (7+9*k)^2. - Robert Israel, Jun 13 2018
Extensions
More terms from Harry J. Smith, Jul 18 2009