A061109 a(1) = 1; a(n) = smallest number such that the concatenation a(1)a(2)...a(n) is an n-th power.
1, 6, 6375, 34623551127976881, 18860302374385155610185422853070042488899966126368559233360607121925651097253827765970857
Offset: 1
Examples
a(1) = 1, a(1)a(2) = 16 = 4^2, a(1)a(2)a(3) = 166375 = 55^3, a(1)a(2)a(3)a(4) = 16637534623551127976881 = 359147^4.
References
- Amarnath Murthy, Exploring some new ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal Vol. 11, No. 1-2-3, Spring 2000.
Programs
-
Maple
ncat:= (a,b) -> a*10^(1+ilog10(b))+b: f:= proc(n,x) local z,d; for d from 1 do z:= ceil(((x+1/10)*10^d)^(1/n)); if z^n < (x+1)*10^d then return z^n - x*10^d fi od end proc: R[1]:= 1: C:= 1: for n from 2 to 6 do R[n]:= f(n,C); C:= ncat(C, R[n]); od: seq(R[i],i=1..6); # Robert Israel, Oct 05 2020
Extensions
Corrected and extended by Ulrich Schimke, Feb 08 2002
Offset corrected by Robert Israel, Oct 05 2020
Comments