cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A061110 a(1) = 1; a(n) = smallest number such that the concatenation a(1)a(2)...a(n) is a square.

Original entry on oeis.org

1, 6, 9, 744, 41796, 60172924176, 8240010144800000000001, 82400101448000000000020000000000000000000001
Offset: 1

Views

Author

Amarnath Murthy, Apr 20 2001

Keywords

Comments

The next term is too large to include.
a(n) is at most doubly exponential in n. Is there also a double exponential lower bound? - Charles R Greathouse IV, Sep 19 2012

Examples

			a(1) = 1, a(1)a(2) = 16 = 4^2, a(1)a(2)a(3) = 169 = 13^2, 169744 = 412^2.
		

Crossrefs

Cf. A061109, A051671. The actual squares are in A048557.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 23 2001

A264848 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 19-gonal: (17n^2 - 15n)/2.

Original entry on oeis.org

1, 9, 224, 631909, 58000804596, 61688194098028272863216, 2514637794509678630513616176470588235294117671, 941048382372874985200592647058823529411764708485294117647058823529411764705882352941176469
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 19, 19224, 19224631909 are 19-gonal.
		

Crossrefs

Programs

  • PARI
    enneadecagonal(n)=ispolygonal(n, 19)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!enneadecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 16 2018

A261696 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 17-gonal: (15n^2 - 13n)/2.

Original entry on oeis.org

1, 7, 689, 6797, 67984832, 6798483348333332, 8455610150480042707742277762479, 707328322040172689545426423113211907561874137758547957769721082
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Comments

From Chai Wah Wu, Mar 16 2018: (Start)
There are some interesting patterns observed in the terms. Terms a(5), a(6), a(9), a(10), a(11), a(12), ... share the same prefix of 6798483...
From terms a(n) for n > 5, there seems to a pattern of how they are constructed from previous terms. a(6) is formed by inserting 3483...3 between the penultimate digit and the last digit of a(5). Then a(7) and (8) do not follow this pattern.
The digits of a(9) and a(6) match until the last digit of a(6). Next, a(10), a(11) and (12) are formed from a(9), a(10) and a(11) resp. by inserting 3483...3. Then this pattern is interrupted by a(13) and a(14), and continue again for a(15) ..., etc.
(End)

Examples

			1, 17, 17689, 176896797 are 17-gonal.
		

Crossrefs

Programs

  • PARI
    heptadecagonal(n)=ispolygonal(n, 17)
    first(m)=my(s=""); s="1"; print1(1, ", ");for(i=2, m, n=1; while(!heptadecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(6)-a(8) from Chai Wah Wu, Mar 16 2018

A264733 a(n) is the smallest number > 1 such that the concatenation a(1)a(2)...a(n) is a perfect power.

Original entry on oeis.org

4, 9, 13, 31556, 4433200001, 7330164793357114944, 364233003001227343654904892703798707409, 30558883460500823396683989630832748682356643682219859233661160618544138815441
Offset: 1

Views

Author

Anders Hellström, Nov 22 2015

Keywords

Crossrefs

Programs

  • Maple
    a[1]:= 4: C:= 4:
    for n from 2 to 9 do
      looking:= true;
      for d from 1 while looking do
         L:= 10^d*C + 10^(d-1);
         U:= 10^d*C + 10^d - 1;
         p:= 1;
         while p < ilog2(U) do
          p:= nextprime(p);
            Lp:= ceil(L^(1/p));
            Up:= floor(U^(1/p));
            while not (Lp::integer and Up::integer) do
               Digits:= 2*Digits;
               Lp:= eval(Lp);
               Up:= eval(Up);
            od;
            if Lp <= Up then
              Cp:= Lp^p;
              a[n]:= Cp - 10^d*C;
              C:= Cp;
              looking:= false;
              break
            fi
         od
      od
    od:
    seq(a[i],i=1..9); # Robert Israel, Nov 27 2015
  • Mathematica
    a = {}; Do[k = 2; While[! Or[# == 1, GCD @@ FactorInteger[#][[All, -1]] > 1] &@ FromDigits@ Flatten@ Join[#, IntegerDigits@ k], k++] &@ Map[IntegerDigits, a]; AppendTo[a, k], {i, 4}]; a (* Michael De Vlieger, Jan 23 2017 *)
  • PARI
    first(m)=my(s="4"); print1(4, ", "); for(i=2,m,n=1; while(!ispower(eval(concat(s,Str(n)))),n++); print1(n, ", "); s=concat(s,Str(n)))

Extensions

a(5)-a(8) from Jon E. Schoenfield, Nov 22 2015

A264804 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 11-gonal: (9n^2 - 7n)/2.

Original entry on oeis.org

1, 1, 526, 64095, 21420730041, 4528059468080555555556, 3834345160635370971474665069772601398563211, 100751687713984558500838936986634939491022212000570658953744730444103042117925197608458
Offset: 1

Views

Author

Anders Hellström, Nov 25 2015

Keywords

Crossrefs

Programs

  • PARI
    hendecagonal(n)=ispolygonal(n,11)
    first(m)=my(v=vector(m),s="");s="1";print1(1, ", ");for(i=2,m,n=1;while(!hendecagonal(eval(concat(s,Str(n)))),n++);print1(n, ", ");s=concat(s,Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 16 2018

A264842 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 13-gonal: (11n^2 - 9n)/2.

Original entry on oeis.org

1, 3, 36, 54765, 123152388, 374848814886363636, 85794018663817263665487289502938826, 107072047880615405294526336549204869795454545454545454545454545454545466
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 13, 1336, 133654765 are 13-gonal.
		

Crossrefs

Programs

  • PARI
    tridecagonal(n)=ispolygonal(n, 13)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!tridecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

More terms from Jon E. Schoenfield, Nov 27 2015

A264849 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 23-gonal: (21n^2 - 19n)/2.

Original entry on oeis.org

1, 30, 648, 6701456, 72020220595275, 970458695858595792221157266, 3377345920936319088412440649783459968197698452784332095, 7477788200541027929765479736500643733301085903714718188060185368351929896324223859775571543015918781111399506
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 130, 130648 are 23-gonal.
		

Crossrefs

Programs

  • PARI
    icositrigonal(n)=ispolygonal(n, 23)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!icositrigonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 15 2018

A061111 a(1) = 1; a(n) = smallest number such that the concatenation a(1).0^*.a(2).0^*....0^*.a(n) is a perfect cube (where any number of 0's can be inserted between the terms).

Original entry on oeis.org

1, 25, 9712, 8685582839, 70309163442200949867268191808152, 83387750596937905713672379983426538301395131506141618968183314995065134642469485779065066952875
Offset: 1

Views

Author

Amarnath Murthy, Apr 20 2001

Keywords

Comments

The implication is that 10...01, 10...02, 10...03, ..., 10...024 are never cubes for any number of internal zeros, while 125 IS a cube, so a(2) = 25. - N. J. A. Sloane, Jul 21 2001

Examples

			a(1) = 1, a(1).a(2) = 125 = 5^3, a(1).a(2).a(3) = 1259712 = 108^3, a(1).a(2).a(3).a(4) = 232679^3.
		

Crossrefs

Extensions

Offset and a(4) corrected and more terms from Sean A. Irvine, Jan 21 2023
Showing 1-8 of 8 results.