A061114 Concatenation of first n Bell numbers (starting with A000110(1)).
1, 12, 125, 12515, 1251552, 1251552203, 1251552203877, 12515522038774140, 1251552203877414021147, 1251552203877414021147115975, 1251552203877414021147115975678570
Offset: 1
Examples
a(5) = 1251552, since 1, 2, 5, 15, 52 are the first five bell numbers.
References
- Amarnath Murthy, Generalization of Partition function, introducing Smarandache Factor partition, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- Amarnath Murthy, A general result on the Smarandache Star function, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- Amarnath Murthy, Properties of Smarandache Star Triangle, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
Programs
-
Maple
with(combinat, bell): for n from 1 to 20 do for k from 1 to n do printf(`%d`, bell(k)) od: printf(`,`): od:
-
Mathematica
Module[{nn=20,bn},bn=BellB[Range[nn]];Table[FromDigits[ Flatten[ IntegerDigits/@ Take[bn,n]]],{n,nn}]] (* Harvey P. Dale, Aug 02 2016 *)
Extensions
More terms from James Sellers, Apr 23 2001
Definition amended by Georg Fischer, Dec 29 2022
Comments