A061161 Numerators in expansion of Euler transform of b(n) = 1/4.
1, 1, 13, 55, 1235, 4615, 55801, 200343, 8977475, 36804235, 367235363, 1444888289, 32062742231, 120729974115, 1205864254225, 5201022002071, 395884671433315, 1603069490974835, 15989295873680415, 64312573140322525, 1250332447587844829, 5262481040435242585
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Geoffrey B. Campbell and A. Zujev, Some almost partition theoretic identities, Preprint, 2016.
- N. J. A. Sloane, Transforms
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(add( d/4, d=numtheory[divisors](j))*b(n-j), j=1..n)/n) end: a:= n-> numer(b(n)): seq(a(n), n=0..30); # Alois P. Heinz, Jul 28 2017
-
Mathematica
c[n_] := c[n] = If[n == 0, 1, (1/(4n)) Sum[c[n-k] DivisorSigma[1, k], {k, 1, n}]]; a[n_] := Numerator[c[n]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 24 2022 *)
Formula
Numerators of c(n), where c(n) = (1/(4*n))*Sum_{k=1..n} c(n-k)*sigma(k), n>0, c(0)=1.
Comments