A061176 Coefficients of polynomials ( (1 -x +sqrt(x))^n + (1 -x -sqrt(x))^n )/2.
1, 1, -1, 1, -1, 1, 1, 0, 0, -1, 1, 2, -5, 2, 1, 1, 5, -15, 15, -5, -1, 1, 9, -30, 41, -30, 9, 1, 1, 14, -49, 77, -77, 49, -14, -1, 1, 20, -70, 112, -125, 112, -70, 20, 1, 1, 27, -90, 126, -117, 117, -126, 90, -27, -1, 1, 35, -105, 90, 45, -131, 45, 90, -105, 35, 1
Offset: 0
Examples
The first few polynomials are: pFe(0,x) = 1. pFe(1,x) = 1 - x. pFe(2,x) = 1 - x + x^2. pFe(3,x) = 1 - 0*x + 0*x^2 - x^3. pFe(4,x) = 1 + 2*x - 5*x^2 + 2*x^3 + x^4. Number triangle begins as: 1; 1, -1; 1, -1, 1; 1, 0, 0, -1; 1, 2, -5, 2, 1; 1, 5, -15, 15, -5, -1; 1, 9, -30, 41, -30, 9, 1; 1, 14, -49, 77, -77, 49, -14, -1; 1, 20, -70, 112, -125, 112, -70, 20, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A061176:= func< n,k | (&+[(-1)^(k+j)*Binomial(n,2*j)*Binomial(n-2*j,k-j): j in [0..k]]) >; [A061176(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
-
Mathematica
T[n_, k_]:= Sum[(-1)^(k+j)*Binomial[n, 2*j]*Binomial[n-2*j, k-j], {j,0,k}]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
Sage
def A061176(n,k): return sum((-1)^(k+j)*binomial(n,2*j)*binomial(n-2*j,k-j) for j in (0..k)) flatten([[A061176(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 06 2021
Formula
T(n, k) = coefficients of x^k of ((1-x+sqrt(x))^n + (1-x-sqrt(x))^n)/2.
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n, 2*j)*binomial(n-2*j, k-j), if 0 <= k <= floor(n/2) and T(n, k) = (-1)^n*T(n, n-k) if floor(n/2) < k <= n, otherwise 0.
Sum_{k=0..n} T(n, k) = A059841(n) = (1 + (-1)^n)/2. - G. C. Greubel, Apr 06 2021
Comments