cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061200 tau_5(n) = number of ordered 5-factorizations of n.

Original entry on oeis.org

1, 5, 5, 15, 5, 25, 5, 35, 15, 25, 5, 75, 5, 25, 25, 70, 5, 75, 5, 75, 25, 25, 5, 175, 15, 25, 35, 75, 5, 125, 5, 126, 25, 25, 25, 225, 5, 25, 25, 175, 5, 125, 5, 75, 75, 25, 5, 350, 15, 75, 25, 75, 5, 175, 25, 175, 25, 25, 5, 375, 5, 25, 75, 210, 25, 125, 5, 75, 25, 125, 5
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_6(n): A034695, (unordered) 2-factorization of n: A038548, (unordered) 3-factorization of n: A034836, A001055, A006218, A061201, A061202, A061203 (partial sums), A061204.
Column k=5 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 5], {n, 77}] (* Robert G. Wilson v *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 5], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,k,sumdiv(k,x,sumdiv(x,y,numdiv(y)))),","))
    
  • PARI
    a(n)=sumdivmult(n,k,sumdivmult(k,x,sumdivmult(x,y,numdiv(y)))) \\ Charles R Greathouse IV, Sep 09 2014
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+4, 4)) \\ Charles R Greathouse IV, Oct 28 2017
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^5)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A061200(n): return prod(comb(4+e,4) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024

Formula

tau_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k=n}|, number of ordered k-factorizations of n.
tau_k(p^m) = (-1)^(k-1)*binomial(-m-1,k-1), p prime.
limit(tau_k(n)/n^epsilon, n=infinity) = 0, for any epsilon>0.
tau_k(n) = Sum_{d|n} tau_(k-1)(d), tau_1(n)=1.
Dirichlet g.f.: (zeta(s))^k.
For explicit formula, see A007425.
G.f.: Sum_{k>=1} tau_4(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018