A061200 tau_5(n) = number of ordered 5-factorizations of n.
1, 5, 5, 15, 5, 25, 5, 35, 15, 25, 5, 75, 5, 25, 25, 70, 5, 75, 5, 75, 25, 25, 5, 175, 15, 25, 35, 75, 5, 125, 5, 126, 25, 25, 25, 225, 5, 25, 25, 175, 5, 125, 5, 75, 75, 25, 5, 350, 15, 75, 25, 75, 5, 175, 25, 175, 25, 25, 5, 375, 5, 25, 75, 210, 25, 125, 5, 75, 25, 125, 5
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Enrique Pérez Herrero)
Crossrefs
Programs
-
Mathematica
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 5], {n, 77}] (* Robert G. Wilson v *) tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 5], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
-
PARI
for(n=1,100,print1(sumdiv(n,k,sumdiv(k,x,sumdiv(x,y,numdiv(y)))),","))
-
PARI
a(n)=sumdivmult(n,k,sumdivmult(k,x,sumdivmult(x,y,numdiv(y)))) \\ Charles R Greathouse IV, Sep 09 2014
-
PARI
a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+4, 4)) \\ Charles R Greathouse IV, Oct 28 2017
-
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^5)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
-
Python
from math import prod, comb from sympy import factorint def A061200(n): return prod(comb(4+e,4) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024
Formula
tau_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k=n}|, number of ordered k-factorizations of n.
tau_k(p^m) = (-1)^(k-1)*binomial(-m-1,k-1), p prime.
limit(tau_k(n)/n^epsilon, n=infinity) = 0, for any epsilon>0.
tau_k(n) = Sum_{d|n} tau_(k-1)(d), tau_1(n)=1.
Dirichlet g.f.: (zeta(s))^k.
For explicit formula, see A007425.
G.f.: Sum_{k>=1} tau_4(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018