A061211 Largest number m such that m is the n-th power of the sum of its digits.
9, 81, 19683, 1679616, 205962976, 68719476736, 6722988818432, 248155780267521, 150094635296999121, 480682838924478847449, 23316389970546096340992, 2518170116818978404827136, 13695791164569918553628942336, 4219782742781494680756610809856
Offset: 1
Examples
a(3) = 19683 = 27^3 and no bigger number can have this property. (This has been established in the Murthy reference.) a(4) = 1679616 = (1+6+7+9+6+1+6)^4 = 36^4.
References
- Amarnath Murthy, The largest and the smallest m-th power whose digits sum /product is its m-th root. To appear in Smarandache Notions Journal.
- Amarnath Murthy, e-book, "Ideas on Smarandache Notions", manuscript.
Links
- T. D. Noe, Table of n, a(n) for n = 1..105
Programs
-
Mathematica
meanDigit = 9/2; translate = 900; upperm[1] = translate; upperm[n_] := Exp[-ProductLog[-1, -Log[10]/(meanDigit*n)]] + translate; a[n_] := (For[max = m = 1, m <= upperm[n], m++, If[m == Total[ IntegerDigits[ m^n ] ], max = m]]; max^n); Array[a, 14] (* Jean-François Alcover, Jan 09 2018 *)
Extensions
More terms from Ulrich Schimke, Feb 11 2002
Edited by N. J. A. Sloane at the suggestion of Farideh Firoozbakht, Dec 04 2007
Comments