cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A076088 Duplicate of A061211.

Original entry on oeis.org

9, 81, 19683, 1679616, 205962976, 68719476736, 6722988818432, 248155780267521
Offset: 1

Views

Author

Keywords

A061209 Numbers which are the cubes of their digit sum.

Original entry on oeis.org

0, 1, 512, 4913, 5832, 17576, 19683
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Comments

It can be shown that 19683 = (1 + 9 + 6 + 8 + 3)^3 = 27^3 is the largest such number.
Numbers of Dudeney. - Philippe Deléham, May 11 2013
If a number n has d digits, 10^(d-1) <= n < 10^d, the cube of the digit sum is at most (d*9)^3 = 729*d^3; if d > 6 this is strictly smaller than 10^(d-1) and cannot be equal to n. See also A061211. - M. F. Hasler, Apr 12 2015

Examples

			4913 = (4 + 9 + 1 + 3)^3.
		

References

  • H. E. Dudeney, 536 Puzzles & Curious Problems, Souvenir Press, London, 1966, p. 36, #120.
  • Amarnath Murthy, The largest and the smallest m-th power whose digit sum is the m-th root. (To be published)
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36.

Crossrefs

Programs

  • Mathematica
    Select[Range[20000],Total[IntegerDigits[#]]^3==#&] (* Harvey P. Dale, Apr 11 2015 *)
  • PARI
    for(n=0,999999,sumdigits(n)^3==n&&print1(n",")) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = A007953(a(n))^3. - M. F. Hasler, Apr 12 2015

Extensions

Initial term 0 added by M. F. Hasler, Apr 12 2015

A061210 Numbers which are the fourth powers of their digit sum.

Original entry on oeis.org

0, 1, 2401, 234256, 390625, 614656, 1679616
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Comments

It can be shown that 1679616 = 36^4 is the largest such number.

Examples

			614656 = ( 6+1+4+6+5+6)^4 =28^4.
		

References

  • Amarnath Murthy, The largest and the smallest m-th power whose digit sum is the m-th root. (To be published)
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36.

Crossrefs

Cf. A061209 (with cubes), A061211.
Cf. A046000, A076090, A046017; A252648 and references there.

Programs

  • Mathematica
    Select[Range[0,17*10^5],#==Total[IntegerDigits[#]]^4&] (* Harvey P. Dale, Sep 22 2019 *)
  • PARI
    isok(n) = n == sumdigits(n)^4; \\ Michel Marcus, Jan 22 2015

Extensions

Corrected by Ulrich Schimke, Feb 11 2002
Initial 0 added by M. F. Hasler, Apr 12 2015

A046017 Least k > 1 with k = sum of digits of k^n, or 0 if no such k exists.

Original entry on oeis.org

2, 9, 8, 7, 28, 18, 18, 46, 54, 82, 98, 108, 20, 91, 107, 133, 80, 172, 80, 90, 90, 90, 234, 252, 140, 306, 305, 90, 305, 396, 170, 388, 170, 387, 378, 388, 414, 468, 449, 250, 432, 280, 461, 280, 360, 360, 350, 370, 270, 685, 360, 625, 648, 370, 677, 684, 370, 667, 370, 694, 440, 855, 827, 430, 818
Offset: 1

Views

Author

Keywords

Comments

First non-occurrence happens with exponent 105. There is no x such that sum-of-digits{x^105}=x (x>1). - Patrick De Geest, Aug 15 1998

Examples

			a(3) = 8 since 8^3 = 512 and 5+1+2 = 8; a(5) = 28 because 28 is least number > 1 with 28^5 = 17210368, 1+7+2+1+0+3+6+8 = 28. 53^7 = 1174711139837 -> 1+1+7+4+7+1+1+1+3+9+8+3+7 = 53.
a(10) = 82 because 82^10 = 13744803133596058624 and 1 + 3 + 7 + 4 + 4 + 8 + 0 + 3 + 1 + 3 + 3 + 5 + 9 + 6 + 0 + 5 + 8 + 6 + 2 + 4 = 82.
a(13) = 20: 20^13=81920000000000000, 8+1+9+2=20.
a(17) = 80: 80^17=225179981368524800000000000000000, 2+2+5+1+7+9+9+8+1+3+6+8+5+2+4+8 = 80.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 208-210.
  • Joe Roberts, "Lure of the Integers", The Mathematical Association of America, 1992, p. 172.

Crossrefs

Cf. A133509 (n for which a(n)=0), A152147 (table of k for each n).

Programs

  • Mathematica
    a[n_] := For[k = 2, k <= 20*n, k++, Which[k == Total[IntegerDigits[k^n]], Return[k], k == 20*n, Return[0]]]; Table[a[n] , {n, 1, 105}] (* Jean-François Alcover, May 23 2012 *)
    sdk[n_]:=Module[{k=2},While[k!=Total[IntegerDigits[k^n]],k++];k]; Array[sdk,70] (* Harvey P. Dale, Jan 07 2024 *)
  • Python
    from itertools import chain
    def c(k, n): return sum(map(int, str(k**n))) == k
    def a(n):
        if n == 0: return False
        d, lim = 1, 1
        while lim < n*9*d: d, lim = d+1, lim*10
        m = next(k for k in chain(range(2, lim+1), (0,)) if c(k, n))
        return m
    print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Jul 06 2022

Extensions

More terms from Asher Auel, Jun 01 2000

A046000 a(n) is the largest number m equal to the sum of digits of m^n.

Original entry on oeis.org

1, 9, 9, 27, 36, 46, 64, 68, 63, 81, 117, 108, 108, 146, 154, 199, 187, 216, 181, 207, 207, 225, 256, 271, 288, 337, 324, 307, 328, 341, 396, 443, 388, 423, 463, 477, 424, 495, 469, 523, 502, 432, 531, 572, 603, 523, 592, 666, 667, 695, 685, 685, 739, 746, 739, 683, 684, 802, 754, 845, 793, 833, 865
Offset: 0

Views

Author

David W. Wilson and Patrick De Geest

Keywords

Comments

Cases a(n) = 1 begin: 0, 105, 164, 186, 194, 206, 216, 231, 254, 282, 285, ... Cf. A133509. - Jean-François Alcover, Jan 09 2018

Examples

			a(3) = 27 because 27 is the largest number with 27^3 = 19683 and 1+9+6+8+3 = 27.
a(5) = 46 because 46 is the largest number with 46^5 = 205962976 and 2+0+5+9+6+2+9+7+6 = 46.
		

References

  • Amarnath Murthy, The largest and the smallest m-th power whose digits sum /product is its m-th root. To appear in Smarandache Notions Journal, 2003.
  • Amarnath Murthy, e-book, "Ideas on Smarandache Notions" MS.LIT
  • Joe Roberts, "Lure of the Integers", The Mathematical Association of America, 1992, p. 172.

Crossrefs

Programs

  • Mathematica
    meanDigit = 9/2; translate = 900; upperm[1] = translate;
    upperm[n_] := Exp[-ProductLog[-1, -Log[10]/(meanDigit*n)]] + translate;
    (* assuming that upper bound of m fits the implicit curve m = Log[10, m^n]*9/2 *)
    a[0] = 1; a[n_] := (For[max = m = 0, m <= upperm[n], m++, If[m == Total[IntegerDigits[m^n]], max = m]]; max);
    Table[a[n], {n, 0, 1000}] (* Jean-François Alcover, Jan 09 2018, updated Jul 07 2022 *)
  • Python
    def ok(k, n): return sum(map(int, str(k**n))) == k
    def a(n):
        d, lim = 1, 1
        while lim < n*9*d: d, lim = d+1, lim*10
        return next(k for k in range(lim, 0, -1) if ok(k, n))
    print([a(n) for n in range(63)]) # Michael S. Branicky, Jul 06 2022

Formula

a(n) = A061211(n)^(1/n), for n > 0.

Extensions

More terms from Asher Auel, Jun 01 2000
More terms from Franklin T. Adams-Watters, Sep 01 2006
Edited by N. J. A. Sloane at the suggestion of David Wasserman, Dec 12 2007

A133509 Numbers k such that m=1 is the only number for which the sum of digits of m^k equals m.

Original entry on oeis.org

0, 105, 164, 186, 194, 206, 216, 231, 254, 282, 285, 302, 314, 324, 374, 386, 402, 416, 456, 468, 491, 504, 521, 552, 588, 606, 610, 615, 629, 651, 656, 657, 696, 759, 794, 830, 842, 854, 870, 903, 906, 954, 956, 981, 998, 1029, 1064, 1079, 1082, 1109, 1112, 1131
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 04 2007

Keywords

Crossrefs

Programs

  • Python
    def ok(n):
        d, lim = 1, 1
        while lim < n*9*d: d, lim = d+1, lim*10
        return not any(sum(map(int, str(k**n))) == k for k in range(2, lim+1))
    for k in range(195):
        if ok(k): print(k, end=", ") # Michael S. Branicky, Jul 06 2022

Formula

If t is a term, A046000(t)=1, A046017(t)=0, A046019(t)=1, A046471(t)=0 and A061211(t)=1. - Mohammed Yaseen, Jun 29 2022

Extensions

Description improved by T. D. Noe, Nov 26 2008
Extension by T. D. Noe, Nov 26 2008
Edited by Charles R Greathouse IV, Aug 02 2010
a(1) = 0 and a(46) and beyond from Michael S. Branicky, Jul 06 2022

A023106 a(n) is a power of the sum of its digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 81, 512, 2401, 4913, 5832, 17576, 19683, 234256, 390625, 614656, 1679616, 17210368, 34012224, 52521875, 60466176, 205962976, 612220032, 8303765625, 10460353203, 24794911296, 27512614111, 52523350144, 68719476736
Offset: 0

Views

Author

Keywords

Comments

Base-10 Reacher numbers: named for the character Jack Reacher in the series of books by Lee Child. Reacher likes the number 81 because it is the square of the sum of its base-10 digits. - Jeffrey Shallit, Apr 03 2015
Contains A061209 and A061210 and all terms of A061211. See A252648 for numbers which are the sum of some power of their digits. - M. F. Hasler, Apr 13 2015

Examples

			2401 is an element because 2401 = 7^4 is a power of its digit sum 7.
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{b = Plus @@ IntegerDigits[n]}, If[b > 1, IntegerQ[ Log[b, n]] ]]; Take[ Select[ Union[ Flatten[ Table[n^m, {n, 55}, {m, 9}]]], fQ[ # ] &], 31] (* Robert G. Wilson v, Jan 28 2005 *)
    Join[{0,1},Select[Range[0,1700000],IntegerQ[Log[Total[IntegerDigits[#]],#]]&]//Quiet] (* The program generates the first 21 terms of the sequence. *) (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    is(n)={n<10||(!(n%s=sumdigits(n))&&s>1&&n==s^round(log(n)/log(s)))} \\ M. F. Hasler, Apr 13 2015
    
  • Python
    import math
    def is_valid(n): dsum = sum(map(int, str(n))); return dsum ** int(round(math.log(n, dsum))) == n if dsum > 1 else n < 2
    # Victor Dumbrava, May 02 2018

A254000 Numbers equal to the fifth powers of the sums of their digits.

Original entry on oeis.org

0, 1, 17210368, 52521875, 60466176, 205962976
Offset: 1

Views

Author

Michal Paulovic, Jan 21 2015

Keywords

Examples

			205962976 = 46^5 = (2 + 0 + 5 + 9 + 6 + 2 + 9 + 7 + 6)^5.
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36.

Crossrefs

Cf. A061209 (with cubes), A061210 (with 4th powers), A061211.

Programs

  • Mathematica
    Select[Range@ 210000000, Plus @@ IntegerDigits@ # ^ 5 == # &] (* Michael De Vlieger, Feb 25 2015 *)
  • PARI
    lista(nn) = {for (n=0, nn, if (n^5 == sumdigits(n^5)^5, print1(n^5, ", ")););} \\ Michel Marcus, Feb 23 2015

Formula

a(n) = A055576(n)^5. - Michel Marcus, Feb 23 2015

A375343 Numbers which are the sixth powers of their digit sum.

Original entry on oeis.org

0, 1, 34012224, 8303765625, 24794911296, 68719476736
Offset: 1

Views

Author

René-Louis Clerc, Aug 12 2024

Keywords

Comments

Solutions can have no more than 13 digits, since (13*9)^6 < 10^13.

Examples

			68719476736 = (6+8+7+1+9+4+7+6+7+3+6)^6 = 64^6.
		

Crossrefs

Programs

  • PARI
    for (k=0, sqrtnint(10^13,6), if (k^6 == sumdigits(k^6)^6, print1(k^6, ", ")); )

Formula

{ k : k = A007953(k)^6}.
a(n) = A055577(n)^6. - Alois P. Heinz, Aug 24 2024

A379767 Triangle read by rows: row n lists numbers which are the n-th powers of their digit sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 81, 0, 1, 512, 4913, 5832, 17576, 19683, 0, 1, 2401, 234256, 390625, 614656, 1679616, 0, 1, 17210368, 52521875, 60466176, 205962976, 0, 1, 34012224, 8303765625, 24794911296, 68719476736, 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432
Offset: 1

Views

Author

René-Louis Clerc, Jan 02 2025

Keywords

Comments

Each row begins with 0, 1. Solutions can have no more than R(n) digits, since (R(n)*9)^n < 10^R(n), hence, for each n, there are a finite number of solutions (Property 1 and table 1 of Clerc).

Examples

			Triangle begins:
  1 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
  2 | 0, 1, 81;
  3 | 0, 1, 512, 4913, 5832, 17576, 19683;
  4 | 0, 1, 2401, 234256, 390625, 614656, 1679616;
  5 | 0, 1, 17210368, 52521875, 60466176, 205962976;
  6 | 0, 1, 34012224, 8303765625, 24794911296, 68719476736;
  7 | 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432;
  8 | 0, 1, 20047612231936, 72301961339136, 248155780267521;
  9 | 0, 1, 3904305912313344, 45848500718449031, 150094635296999121;
  ...
		

Crossrefs

Rows 3..6 are A061209, A061210, A254000, A375343.
Row lengths are 1 + A046019(n).
Cf. A001014, A007953, A061211 (largest terms), A133509.
Cf. A152147.

Programs

  • PARI
    R(n) = for(j=2,oo, if((j*9)^n <10^j, return(j)));
    row(n) = my(L=List()); for (k=0, sqrtnint(10^R(n),n), if (k^n == sumdigits(k^n)^n, listput(L, k^n))); Vec(L)
Showing 1-10 of 10 results.