cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A366507 Numbers k such that the sum of the digits of k times the square of the sum of the digits cubed of k equals k.

Original entry on oeis.org

1, 4147200, 12743163, 21147075, 39143552, 52921472, 156754936, 205889445, 233935967
Offset: 1

Views

Author

René-Louis Clerc, Oct 11 2023

Keywords

Comments

There are exactly 9 such numbers (Property 13 of Clerc).

Examples

			4147200 = (4+1+4+7+2)*(4^3+1+4^3+7^3+2^3)^2 = 18*230400.
		

Crossrefs

Programs

  • PARI
    niven12()={for(a=0,9,for(b=0,9,for(c=0,9,for(d=0,9,for(e=0,9,for(f=0,9,for(g=0,9,for(h=0,9,for(i=0,9,for(j=0,9,if((a+b+c+d+e+f+g+h+i+j)*(a^3+b^3+c^3+d^3+e^3+f^3+g^3+h^3+i^3+j^3)^2==1000000000*a+100000000*b+10000000*c+1000000*d+100000*e+10000*f+1000*g+100*h+10*i+j,print1(1000000000*a+100000000*b+10000000*c+1000000*d+100000*e+10000*f+1000*g+100*h+10*i+j,";"))))))))))))}
    
  • PARI
    isok(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^3)^2 == k; \\ Michel Marcus, Oct 12 2023

A366512 Numbers k such that the square of the sum of the digits times the sum of the cubes of the digits equals k.

Original entry on oeis.org

1, 32144, 37000, 111616, 382360
Offset: 1

Views

Author

René-Louis Clerc, Oct 11 2023

Keywords

Comments

There are exactly 5 such numbers (Property 14 of Clerc).

Examples

			32144 = ((3+2+1+4+4)^2)*(3^3 + 2^3 + 1^3 + 4^3 + 4^3) = 196*164.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1 == Total[#2]^2*Total[#2^3] & @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Mar 25 2024 *)
  • PARI
    niven23()={for(a=0,9,for(b=0,9,for(c=0,9,for(d=0,9,for(e=0,9,for(f=0,9,for(g=0,9,for(h=0,9,if((a+b+c+d+e+f+g+h)^2*(a^3+b^3+c^3+d^3+e^3+f^3+g^3+h^3)==10000000*a+1000000*b+100000*c+10000*d+1000*e+100*f+10*g+h,print1(10000000*a+1000000*b+100000*c+10000*d+1000*e+100*f+10*g+h,", "))))))))))}
    
  • PARI
    isok(k) = my(d=digits(k)); vecsum(d)^2*sum(i=1, #d, d[i]^3) == k; \\ Michel Marcus, Oct 12 2023

A368939 Numbers k such that the sum of the digits times the sum of the fourth powers of the digits equals k.

Original entry on oeis.org

0, 1, 182380, 444992
Offset: 1

Views

Author

René-Louis Clerc, Jan 10 2024

Keywords

Comments

There are exactly 4 such numbers (Property 16 of Clerc).

Examples

			182380 = (1+8+2+3+8)*(1^4 + 8^4 + 2^4 + 3^4 + 8^4) = 22*8290.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,10^7],#==Total[IntegerDigits[#]]*Total[IntegerDigits[#]^4]&] (* James C. McMahon, Jan 11 2024 *)
  • PARI
    niven14(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^4) == k;
    for(k=1,10^7,if(niven14(k)==1,print1(k,", ")))

A375343 Numbers which are the sixth powers of their digit sum.

Original entry on oeis.org

0, 1, 34012224, 8303765625, 24794911296, 68719476736
Offset: 1

Views

Author

René-Louis Clerc, Aug 12 2024

Keywords

Comments

Solutions can have no more than 13 digits, since (13*9)^6 < 10^13.

Examples

			68719476736 = (6+8+7+1+9+4+7+6+7+3+6)^6 = 64^6.
		

Crossrefs

Programs

  • PARI
    for (k=0, sqrtnint(10^13,6), if (k^6 == sumdigits(k^6)^6, print1(k^6, ", ")); )

Formula

{ k : k = A007953(k)^6}.
a(n) = A055577(n)^6. - Alois P. Heinz, Aug 24 2024

A379767 Triangle read by rows: row n lists numbers which are the n-th powers of their digit sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 81, 0, 1, 512, 4913, 5832, 17576, 19683, 0, 1, 2401, 234256, 390625, 614656, 1679616, 0, 1, 17210368, 52521875, 60466176, 205962976, 0, 1, 34012224, 8303765625, 24794911296, 68719476736, 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432
Offset: 1

Views

Author

René-Louis Clerc, Jan 02 2025

Keywords

Comments

Each row begins with 0, 1. Solutions can have no more than R(n) digits, since (R(n)*9)^n < 10^R(n), hence, for each n, there are a finite number of solutions (Property 1 and table 1 of Clerc).

Examples

			Triangle begins:
  1 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
  2 | 0, 1, 81;
  3 | 0, 1, 512, 4913, 5832, 17576, 19683;
  4 | 0, 1, 2401, 234256, 390625, 614656, 1679616;
  5 | 0, 1, 17210368, 52521875, 60466176, 205962976;
  6 | 0, 1, 34012224, 8303765625, 24794911296, 68719476736;
  7 | 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432;
  8 | 0, 1, 20047612231936, 72301961339136, 248155780267521;
  9 | 0, 1, 3904305912313344, 45848500718449031, 150094635296999121;
  ...
		

Crossrefs

Rows 3..6 are A061209, A061210, A254000, A375343.
Row lengths are 1 + A046019(n).
Cf. A001014, A007953, A061211 (largest terms), A133509.
Cf. A152147.

Programs

  • PARI
    R(n) = for(j=2,oo, if((j*9)^n <10^j, return(j)));
    row(n) = my(L=List()); for (k=0, sqrtnint(10^R(n),n), if (k^n == sumdigits(k^n)^n, listput(L, k^n))); Vec(L)

A370250 Numbers k such that the sum of the digits times the square of the sum of the fourth powers of the digits equals k.

Original entry on oeis.org

0, 1, 5873656512, 7253758561, 29961747275
Offset: 1

Views

Author

René-Louis Clerc, Feb 13 2024

Keywords

Comments

There are exactly 5 such numbers (Property 17 of Clerc).

Examples

			7253758561 = (7+2+5+3+7+5+8+5+6+1)*(7^4 + 2^4 + 5^4 + 3^4 + 7^4 + 5^4 + 8^4 + 5^4 + 6^4 + 1^4)^2 = 49*148035889 = 7253758561.
		

Crossrefs

Programs

  • PARI
    niven142(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^4)^2 == k;
    for(k=0,10^12,if(niven142(k)==1,print1(k, ", ")))
Showing 1-6 of 6 results.