Original entry on oeis.org
1, 9, 8, 7, 28, 18, 18, 46, 54, 82, 98, 108, 20, 91, 107, 133, 80, 172, 80, 90, 90, 90, 234, 252, 140, 306, 305, 90, 305, 396, 170, 388, 170, 387, 378, 388, 414, 468, 449, 250, 432, 280, 461, 280, 360, 360, 350, 370, 270, 685, 360, 625, 648, 370, 677, 684, 370
Offset: 1
A152147
Irregular triangle in which row n lists k > 0 such that the sum of digits of k^n equals k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 9, 1, 8, 17, 18, 26, 27, 1, 7, 22, 25, 28, 36, 1, 28, 35, 36, 46, 1, 18, 45, 54, 64, 1, 18, 27, 31, 34, 43, 53, 58, 68, 1, 46, 54, 63, 1, 54, 71, 81, 1, 82, 85, 94, 97, 106, 117, 1, 98, 107, 108, 1, 108, 1, 20, 40, 86, 103, 104, 106, 107, 126, 134, 135
Offset: 1
1, 2, 3, 4, 5, 6, 7, 8, 9;
1, 9;
1, 8, 17, 18, 26, 27; (A046459, with 0)
1, 7, 22, 25, 28, 36; (A055575 " )
1, 28, 35, 36, 46; (A055576 " )
1, 18, 45, 54, 64; (A055577 " )
1, 18, 27, 31, 34, 43, 53, 58, 68; (A226971 " )
1, 46, 54, 63;
1, 54, 71, 81,
1, 82, 85, 94, 97, 106, 117,
1, 98, 107, 108, etc.
-
def ok(k, r): return sum(map(int, str(k**r))) == k
def agen(rows, startrow=1, withzero=0):
for r in range(startrow, rows + startrow):
d, lim = 1, 1
while lim < r*9*d: d, lim = d+1, lim*10
yield from [k for k in range(1-withzero, lim+1) if ok(k, r)]
print([an for an in agen(13)]) # Michael S. Branicky, May 23 2021
A061210
Numbers which are the fourth powers of their digit sum.
Original entry on oeis.org
0, 1, 2401, 234256, 390625, 614656, 1679616
Offset: 1
614656 = ( 6+1+4+6+5+6)^4 =28^4.
- Amarnath Murthy, The largest and the smallest m-th power whose digit sum is the m-th root. (To be published)
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36.
-
Select[Range[0,17*10^5],#==Total[IntegerDigits[#]]^4&] (* Harvey P. Dale, Sep 22 2019 *)
-
isok(n) = n == sumdigits(n)^4; \\ Michel Marcus, Jan 22 2015
Corrected by Ulrich Schimke, Feb 11 2002
A061211
Largest number m such that m is the n-th power of the sum of its digits.
Original entry on oeis.org
9, 81, 19683, 1679616, 205962976, 68719476736, 6722988818432, 248155780267521, 150094635296999121, 480682838924478847449, 23316389970546096340992, 2518170116818978404827136, 13695791164569918553628942336, 4219782742781494680756610809856
Offset: 1
a(3) = 19683 = 27^3 and no bigger number can have this property. (This has been established in the Murthy reference.)
a(4) = 1679616 = (1+6+7+9+6+1+6)^4 = 36^4.
- Amarnath Murthy, The largest and the smallest m-th power whose digits sum /product is its m-th root. To appear in Smarandache Notions Journal.
- Amarnath Murthy, e-book, "Ideas on Smarandache Notions", manuscript.
-
meanDigit = 9/2; translate = 900; upperm[1] = translate;
upperm[n_] := Exp[-ProductLog[-1, -Log[10]/(meanDigit*n)]] + translate;
a[n_] := (For[max = m = 1, m <= upperm[n], m++, If[m == Total[ IntegerDigits[ m^n ] ], max = m]]; max^n);
Array[a, 14] (* Jean-François Alcover, Jan 09 2018 *)
More terms from Ulrich Schimke, Feb 11 2002
A046000
a(n) is the largest number m equal to the sum of digits of m^n.
Original entry on oeis.org
1, 9, 9, 27, 36, 46, 64, 68, 63, 81, 117, 108, 108, 146, 154, 199, 187, 216, 181, 207, 207, 225, 256, 271, 288, 337, 324, 307, 328, 341, 396, 443, 388, 423, 463, 477, 424, 495, 469, 523, 502, 432, 531, 572, 603, 523, 592, 666, 667, 695, 685, 685, 739, 746, 739, 683, 684, 802, 754, 845, 793, 833, 865
Offset: 0
a(3) = 27 because 27 is the largest number with 27^3 = 19683 and 1+9+6+8+3 = 27.
a(5) = 46 because 46 is the largest number with 46^5 = 205962976 and 2+0+5+9+6+2+9+7+6 = 46.
- Amarnath Murthy, The largest and the smallest m-th power whose digits sum /product is its m-th root. To appear in Smarandache Notions Journal, 2003.
- Amarnath Murthy, e-book, "Ideas on Smarandache Notions" MS.LIT
- Joe Roberts, "Lure of the Integers", The Mathematical Association of America, 1992, p. 172.
-
meanDigit = 9/2; translate = 900; upperm[1] = translate;
upperm[n_] := Exp[-ProductLog[-1, -Log[10]/(meanDigit*n)]] + translate;
(* assuming that upper bound of m fits the implicit curve m = Log[10, m^n]*9/2 *)
a[0] = 1; a[n_] := (For[max = m = 0, m <= upperm[n], m++, If[m == Total[IntegerDigits[m^n]], max = m]]; max);
Table[a[n], {n, 0, 1000}] (* Jean-François Alcover, Jan 09 2018, updated Jul 07 2022 *)
-
def ok(k, n): return sum(map(int, str(k**n))) == k
def a(n):
d, lim = 1, 1
while lim < n*9*d: d, lim = d+1, lim*10
return next(k for k in range(lim, 0, -1) if ok(k, n))
print([a(n) for n in range(63)]) # Michael S. Branicky, Jul 06 2022
A133509
Numbers k such that m=1 is the only number for which the sum of digits of m^k equals m.
Original entry on oeis.org
0, 105, 164, 186, 194, 206, 216, 231, 254, 282, 285, 302, 314, 324, 374, 386, 402, 416, 456, 468, 491, 504, 521, 552, 588, 606, 610, 615, 629, 651, 656, 657, 696, 759, 794, 830, 842, 854, 870, 903, 906, 954, 956, 981, 998, 1029, 1064, 1079, 1082, 1109, 1112, 1131
Offset: 1
-
def ok(n):
d, lim = 1, 1
while lim < n*9*d: d, lim = d+1, lim*10
return not any(sum(map(int, str(k**n))) == k for k in range(2, lim+1))
for k in range(195):
if ok(k): print(k, end=", ") # Michael S. Branicky, Jul 06 2022
Description improved by
T. D. Noe, Nov 26 2008
A072408
Least number > 1 which equals n-th power of the sum of its digits in decimal base.
Original entry on oeis.org
2, 81, 512, 2401, 17210368, 34012224, 612220032, 20047612231936, 3904305912313344, 13744803133596058624, 8007313507497959524352, 2518170116818978404827136, 81920000000000000, 2670419511272061205254504361, 2759031540715333904109053133443
Offset: 1
a(1) = 2 > 1;
a(9) = 3904305912313344 = 54^9 = (3+9+0+4+3+0+5+9+1+2+3+1+3+3+4+4)^9.
-
Array[Block[{k = 2}, While[k^# != Total[IntegerDigits[k^#]]^#, k++]; k^#] &, 13] (* Michael De Vlieger, Nov 05 2020 *)
A076090
a(1) = 1; for n > 1, smallest number > 1 which is the n-th power of the sum of its digits, or 0 if no such number exists.
Original entry on oeis.org
1, 81, 512, 2401, 17210368, 34012224, 612220032, 20047612231936, 3904305912313344, 13744803133596058624, 8007313507497959524352, 2518170116818978404827136, 81920000000000000
Offset: 1
a(3) = 512 = 8^3 and no smaller number (>1) can have this property. (This has been established in the reference.)
- Amarnath Murthy, The largest and the smallest m-th power whose digits sum /product is its m-th root. To appear in Smarandache Notions Journal.
- Amarnath Murthy, e-book, " Ideas on Smarandache Notions " MS.LIT
A212667
Numbers n such that the sum of digits of n equals the concatenation of the distinct prime divisors of n.
Original entry on oeis.org
2, 3, 5, 7, 2401, 4913, 655360, 3906250, 6553600, 39062500, 41943040, 65536000, 390625000, 419430400, 655360000, 3906250000, 4194304000, 6553600000, 27512614111, 39062500000, 41943040000, 65536000000, 271818611107, 390625000000, 419430400000
Offset: 1
655360 is in the sequence because 655360 = 2^17 * 5 => the concatenation of the prime divisors is the number 25 and 6+5+5+3+6+0 = 25.
-
with(numtheory):for n from 1 to 10^8 do: V:=convert(n, base, 10): n1:=nops(V): s1:=sum(‘V[m]’, ‘m’=1..n1):x:=factorset(n):n1:=nops(x): s:=0:s0:=0:for i from n1 by -1 to 1 do: a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b:od: if s=s1 then print(n):else fi:od:
Showing 1-9 of 9 results.
Comments