cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061248 Primes at which sum of digits strictly increases.

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 29, 59, 79, 89, 199, 389, 499, 599, 997, 1889, 1999, 2999, 4999, 6899, 8999, 29989, 39989, 49999, 59999, 79999, 98999, 199999, 389999, 598999, 599999, 799999, 989999, 2998999, 2999999, 4999999, 6999899, 8989999, 9899999
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Examples

			a(6) = 19, sum of digits is 10; a(7) = 29, sum of digits is 11 and 11 > 10.
		

Crossrefs

For the actual digit sums see A062132.

Programs

  • Mathematica
    t = {s = 2}; Do[If[(y = Total[IntegerDigits[x = Prime[n]]]) > s, AppendTo[t, x]; s = y], {n, 2, 750000}]; t (* Jayanta Basu, Aug 09 2013 *)
  • Sage
    def A061248(nterms, b=10) :
        res = []; n_list = [2]; n = 2; dsum = 0
        while len(res) < nterms :
            while not (sum(n_list) >= dsum and n.is_prime()) :
                i = next((j for j in range(len(n_list)) if n_list[j] < b-1), len(n_list))
                if i == len(n_list) : n_list.append(0)
                n_list[i] += 1
                r = dsum - sum(n_list[i:])
                for j in range(i) :
                    n_list[j] = min(r, b-1)
                    r -= n_list[j]
                n = sum(n_list[i]*b^i for i in range(len(n_list)))
            res.append(n); dsum = sum(n_list)+1
        return res
    # Eric M. Schmidt, Oct 08 2013

Extensions

More terms from Patrick De Geest, Jun 05 2001