A061248 Primes at which sum of digits strictly increases.
2, 3, 5, 7, 17, 19, 29, 59, 79, 89, 199, 389, 499, 599, 997, 1889, 1999, 2999, 4999, 6899, 8999, 29989, 39989, 49999, 59999, 79999, 98999, 199999, 389999, 598999, 599999, 799999, 989999, 2998999, 2999999, 4999999, 6999899, 8989999, 9899999
Offset: 1
Examples
a(6) = 19, sum of digits is 10; a(7) = 29, sum of digits is 11 and 11 > 10.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1000
Crossrefs
For the actual digit sums see A062132.
Programs
-
Mathematica
t = {s = 2}; Do[If[(y = Total[IntegerDigits[x = Prime[n]]]) > s, AppendTo[t, x]; s = y], {n, 2, 750000}]; t (* Jayanta Basu, Aug 09 2013 *)
-
Sage
def A061248(nterms, b=10) : res = []; n_list = [2]; n = 2; dsum = 0 while len(res) < nterms : while not (sum(n_list) >= dsum and n.is_prime()) : i = next((j for j in range(len(n_list)) if n_list[j] < b-1), len(n_list)) if i == len(n_list) : n_list.append(0) n_list[i] += 1 r = dsum - sum(n_list[i:]) for j in range(i) : n_list[j] = min(r, b-1) r -= n_list[j] n = sum(n_list[i]*b^i for i in range(len(n_list))) res.append(n); dsum = sum(n_list)+1 return res # Eric M. Schmidt, Oct 08 2013
Extensions
More terms from Patrick De Geest, Jun 05 2001