A061261 Limits of diagonals in triangle defined in A061260.
1, 2, 6, 15, 37, 85, 194, 423, 912, 1917, 3974, 8096, 16302, 32382, 63668, 123851, 238756, 456190, 864821, 1627016, 3039845, 5641884, 10406924, 19083836, 34802782, 63135539, 113965033, 204739662, 366156396, 652001918, 1156200929, 2042173379, 3593341512
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Crossrefs
Cf. A061260.
Programs
-
Maple
with(numtheory): with(combinat): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* numbpart(d+1), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Apr 14 2017, revised Sep 19 2017
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d PartitionsP[d+1], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n]; a /@ Range[0, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
Formula
G.f.: Product_{k >= 1} (1 - x^k)^( - numbpart(k + 1)), where numbpart(k) = number of partitions of k, cf. A000041. a(n) = 1/n*Sum_{k = 1..n} b(k)*a(n - k), n>0, a(0) = 1, where b(k) = Sum_{d|k} d*numbpart(d + 1).
a(n) = A061260(2n,n). - Alois P. Heinz, Oct 21 2018
Comments