A061304 Squarefree triangular numbers.
1, 3, 6, 10, 15, 21, 55, 66, 78, 91, 105, 190, 210, 231, 253, 406, 435, 465, 561, 595, 703, 741, 861, 903, 946, 1081, 1326, 1378, 1653, 1711, 1770, 1830, 1891, 2145, 2211, 2278, 2346, 2415, 2485, 2701, 2926, 3003, 3081, 3403, 3486, 3570, 3655, 3741, 4186, 4278
Offset: 1
Examples
105 = 3 * 5 * 7 is a squarefree triangular number.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Programs
-
Maple
# uses code of A000217 isA061304 := proc(n) isA000217(n) and issqrfree(n) ; simplify(%) ; end proc: for n from 1 to 5000 do if isA061304(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Oct 05 2017
-
Mathematica
Select[Accumulate[Range[0, 100]], SquareFreeQ] (* Jean-François Alcover, Apr 17 2020 *)
-
PARI
isA078779F(f)=for(i=2,#f~, if(f[i,2]>1, return(0))); #f~==0 || f[1,2]==1 || (f[1,2]==2 && f[1,1]==2) list(lim)=my(v=List(), ok=1); forfactored(n=2, (sqrtint(lim\1*8+1)+1)\2, e=n[2][,2]; if(isA078779F(n[2]), if(ok, listput(v, binomial(n[1],2)), ok=1), ok=0)); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017