cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061313 Minimal number of steps to get from 1 to n by (a) subtracting 1 or (b) multiplying by 2.

Original entry on oeis.org

0, 1, 3, 2, 5, 4, 4, 3, 7, 6, 6, 5, 6, 5, 5, 4, 9, 8, 8, 7, 8, 7, 7, 6, 8, 7, 7, 6, 7, 6, 6, 5, 11, 10, 10, 9, 10, 9, 9, 8, 10, 9, 9, 8, 9, 8, 8, 7, 10, 9, 9, 8, 9, 8, 8, 7, 9, 8, 8, 7, 8, 7, 7, 6, 13, 12, 12, 11, 12, 11, 11, 10, 12, 11, 11, 10, 11, 10, 10, 9, 12, 11, 11, 10, 11, 10, 10, 9, 11, 10
Offset: 1

Views

Author

Henry Bottomley, Jun 06 2001

Keywords

Comments

Also number of steps to get from n to 1 by process of adding 1 if odd, or dividing by 2 if even.
It is straightforward to prove that the number n appears F(n) times in this sequence, where F(n) is the n-th Fibonacci number (A000045). - Gary Gordon, May 31 2019
Conjecture: a(n)+2 is the sum of the terms of the Hirzebruch (negative) continued fraction for the Stern-Brocot tree fraction A007305(n)/A007306(n). - Andrey Zabolotskiy, Apr 17 2020

Examples

			a(2) = 1 since 2 = 1*2, a(3) = 3 since 3 = 1*2*2-1, a(11) = 6 since 11 = (1*2*2-1)*2*2-1.
		

Crossrefs

Programs

  • Haskell
    a061313 n = fst $ until ((== 1) . snd) (\(u, v) -> (u + 1, f v)) (0, n)
       where f n = if r == 0 then n' else n + 1  where (n', r) = divMod n 2
    -- Reinhard Zumkeller, Sep 05 2015
  • Mathematica
    f[n_] := Block[{c = 0, m = n}, While[m != 1, If[ EvenQ[m], While[ EvenQ[m], m = m/2; c++ ], m++; c++ ]]; Return[c]]; Table[f[n], {n, 1, 100}]
  • PARI
    a(n)=if(n<2,0,s=n; c=1; while((s+s%2)/(2-s%2)>1,s=(s+s%2)/(2-s%2); c++); c)
    
  • PARI
    xpcount(n) = { p = 1; for(x=1,n, p1 = x; ct=0; while(p1>1, if(p1%2==0,p1/=2; ct++,p1 = p1*p+1; ct++) ); print1(ct, ", ") ) }
    
  • PARI
    a(n) = if(n--,2*(logint(n,2)+1)) - hammingweight(n); \\ Kevin Ryde, Oct 21 2021
    

Formula

a(2n) = a(n)+1; a(2n+1) = a(n+1)+2; a(1) = 0.
Is Sum_{k=1..n} a(k) asymptotic to C*n*log(n) where 3 > C > 2? - Benoit Cloitre, Aug 31 2002
G.f.: x/(1-x) * Sum_{k>=0} (x^2^k + x^2^(k+1)/(1+x^2^k)). - Ralf Stephan, Jun 14 2003
a(n) = A080791(n-1) + A029837(n). - Ralf Stephan, Jun 14 2003
a(n) = 2*A023416(n-1) + A000120(n-1) = A023416(A062880(n)) = A023416(A000695(n)) + 1. - Ralf Stephan, Jul 16 2003
a(n) = A119477(n) - 1. - Philippe Deléham, Nov 03 2008