A061338 Increase in maximal number of comparisons for sorting n elements by list merging.
0, 1, 2, 2, 4, 2, 3, 3, 8, 2, 3, 3, 5, 3, 4, 4, 16, 2, 3, 3, 5, 3, 4, 4, 9, 3, 4, 4, 6, 4, 5, 5, 32, 2, 3, 3, 5, 3, 4, 4, 9, 3, 4, 4, 6, 4, 5, 5, 17, 3, 4, 4, 6, 4, 5, 5, 10, 4, 5, 5, 7, 5, 6, 6, 64, 2, 3, 3, 5, 3, 4, 4, 9, 3, 4, 4, 6, 4, 5, 5, 17, 3, 4, 4, 6, 4, 5, 5, 10, 4, 5, 5, 7, 5, 6, 6, 33, 3, 4, 4
Offset: 0
Keywords
Crossrefs
Cf. A003071.
Programs
-
Haskell
a061338 0 = 0 a061338 n = a006519 n + a000120 n - 1 -- Reinhard Zumkeller, Dec 29 2011
-
Mathematica
nn=100; s={1}; m = Ceiling[Log[2, nn]]; Do[s=Join[s, {2^n}, s+1], {n,m}]; Prepend[Take[s,nn], 0] (* Zak Seidov, Dec 28 2011 *)
Formula
For n > 0: a(n) = A003071(n) - A003071(n - 1) = A006519(n) + A000120(n) - 1. If n is a power of 2 then a(n) = n, otherwise a(n) = a(A053645(n)) + 1 where A053645(n) = n - 2^floor(log_2(n)) is the amount by which n exceeds a power of 2.
G.f.: x/(1-x)^2 + (1/(1-x))*Sum_{k>=1} (-1 + (1-x)*2^(k-1))*x^2^k/(1-x^2^k). - Ralf Stephan, Apr 17 2003
Comments