cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061349 Sum of antidiagonals of A060736.

Original entry on oeis.org

0, 1, 6, 17, 40, 75, 130, 203, 304, 429, 590, 781, 1016, 1287, 1610, 1975, 2400, 2873, 3414, 4009, 4680, 5411, 6226, 7107, 8080, 9125, 10270, 11493, 12824, 14239, 15770, 17391, 19136, 20977, 22950, 25025, 27240, 29563, 32034, 34619, 37360, 40221
Offset: 0

Views

Author

Henry Bottomley, Jun 07 2001

Keywords

Comments

a(1) = 1, a(2) = 2+4=6, a(3) = 5+3+9=17, a(4) = 10+6+8+16=40.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{0,1,6,17,40,75},50] (* Harvey P. Dale, Oct 17 2021 *)
    Accumulate[Table[n^2 + (n - 1)^2 - Floor[((n-1)/2)]*Floor[((n+1)/2)],{n,41}]] (* Stefano Spezia, Jun 05 2023 *)
  • PARI
    concat(0, Vec(x*(x^4+4*x^3+4*x^2+4*x+1)/((x-1)^4*(x+1)^2) + O(x^100))) \\ Colin Barker, Sep 13 2014

Formula

a(n) = A005900(n) - A006918(n).
a(n) = a(n-1) + A001844(n-1) - A002378(A004526(n-1)).
a(n) = a(n-1) + n^2 + (n - 1)^2 - floor((n-1)/2)*floor((n+1)/2).
If n is odd then a(n) = (7*n^3 + 5*n)/12;
If n is even then a(n) = (7*n^3 + 8*n)/12.
From Colin Barker, Sep 13 2014: (Start)
a(n) = (n*(13 + 3*(-1)^n + 14*n^2))/24.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x*(x^4 + 4*x^3 + 4*x^2 + 4*x + 1)/((x - 1)^4*(x + 1)^2). (End)
E.g.f.: x*((12 + 21*x + 7*x^2)*cosh(x) + (15 + 21*x + 7*x^2)*sinh(x))/12. - Stefano Spezia, Jun 05 2023