A061349 Sum of antidiagonals of A060736.
0, 1, 6, 17, 40, 75, 130, 203, 304, 429, 590, 781, 1016, 1287, 1610, 1975, 2400, 2873, 3414, 4009, 4680, 5411, 6226, 7107, 8080, 9125, 10270, 11493, 12824, 14239, 15770, 17391, 19136, 20977, 22950, 25025, 27240, 29563, 32034, 34619, 37360, 40221
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Mathematica
LinearRecurrence[{2,1,-4,1,2,-1},{0,1,6,17,40,75},50] (* Harvey P. Dale, Oct 17 2021 *) Accumulate[Table[n^2 + (n - 1)^2 - Floor[((n-1)/2)]*Floor[((n+1)/2)],{n,41}]] (* Stefano Spezia, Jun 05 2023 *)
-
PARI
concat(0, Vec(x*(x^4+4*x^3+4*x^2+4*x+1)/((x-1)^4*(x+1)^2) + O(x^100))) \\ Colin Barker, Sep 13 2014
Formula
a(n) = a(n-1) + n^2 + (n - 1)^2 - floor((n-1)/2)*floor((n+1)/2).
If n is odd then a(n) = (7*n^3 + 5*n)/12;
If n is even then a(n) = (7*n^3 + 8*n)/12.
From Colin Barker, Sep 13 2014: (Start)
a(n) = (n*(13 + 3*(-1)^n + 14*n^2))/24.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x*(x^4 + 4*x^3 + 4*x^2 + 4*x + 1)/((x - 1)^4*(x + 1)^2). (End)
E.g.f.: x*((12 + 21*x + 7*x^2)*cosh(x) + (15 + 21*x + 7*x^2)*sinh(x))/12. - Stefano Spezia, Jun 05 2023
Comments