cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061350 Maximal size of Aut(G) where G is a finite Abelian group of order n.

Original entry on oeis.org

1, 1, 2, 6, 4, 2, 6, 168, 48, 4, 10, 12, 12, 6, 8, 20160, 16, 48, 18, 24, 12, 10, 22, 336, 480, 12, 11232, 36, 28, 8, 30, 9999360, 20, 16, 24, 288, 36, 18, 24, 672, 40, 12, 42, 60, 192, 22, 46, 40320, 2016, 480, 32, 72, 52, 11232, 40, 1008, 36, 28, 58, 48, 60, 30, 288
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 07 2001

Keywords

Comments

a(n) is multiplicative; if n = p^m is a prime power the maximal size of Aut(G) is attained by the elementary Abelian group G =(C_p)^m and then Aut(G) is GL(m,p) and a(n) = (p^m - 1)*(p^m - p)*...*(p^m - p^(m-1)). For general n the maximum will be for the direct product of the (C_p)^m over the prime powers dividing n and then the automorphism group is the direct product of the GL(m,p).
Equivalently, maximal size of Aut(G) where G is a nilpotent group of order n. - Eric M. Schmidt, Feb 27 2013

Crossrefs

Programs

  • Maple
    A061350 := proc(n) local ans, i, j; ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*(mul(ifactors(n)[2][i][1]^ifactors(n)[2][i][2] - ifactors(n)[2][i][1]^(j - 1), j = 1..ifactors(n)[2][i][2])): od: RETURN(ans) end:
  • Mathematica
    a[p_?PrimeQ] := p-1; a[1] = 1; a[n_] := Times @@ (Product[#[[1]]^#[[2]] - #[[1]]^k, {k, 0, #[[2]]-1}]& /@ FactorInteger[n]); Table[a[n], {n, 1, 63}] (* Jean-François Alcover, May 21 2012, after Maple *)

Extensions

More terms from Vladeta Jovovic, Jun 12 2001