cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059773 Maximum size of Aut(G) where G is a finite group of order n.

Original entry on oeis.org

1, 1, 2, 6, 4, 6, 6, 168, 48, 20, 10, 24, 12, 42, 8, 20160, 16, 432, 18, 40, 42, 110, 22, 336, 480, 156, 11232, 84, 28, 120, 30, 9999360, 20, 272, 24, 864, 36, 342, 156, 672, 40, 252, 42, 220, 192, 506, 46, 40320, 2016, 12000, 32, 312, 52, 303264, 110, 1008
Offset: 1

Views

Author

Victor S. Miller, Feb 21 2001

Keywords

Comments

If n = 2^k then take G to be (Z/2Z)^k, the Abelian group with n=2^k elements and characteristic two. It is generated by any k linearly independent (non-identity) elements, so the automorphism group has size (n-1)(n-2)(n-4)...(n-2^(k-1)), which grows as n^log n. I think one can show that this is optimal for n=2^k and furthermore that this has the highest rate of growth for any infinite sequence of n's. - Michael Kleber, Feb 21 2001
Equals A061350(n) for n in A056867. - Eric M. Schmidt, Mar 02 2013

Examples

			The corresponding groups are 1, Z2, Z3, (Z2)^2, Z5, S3, Z7, (Z2)^3, (Z3)^2, D5, Z11, A4, Z13, D7, Z15, (Z2)^4, Z17, ...
		

Crossrefs

Cf. A061350.

Programs

  • GAP
    A059773 := function(n) local max, f, i; if IsPrimePowerInt(n) then f := PrimePowersInt(n); return Product([0..f[2]-1], k->n-f[1]^k); fi; max := 1; for i in [1..NumberSmallGroups(n)] do max := Maximum(max, Size(AutomorphismGroup(SmallGroup(n,i)))); od; return max; end; # Eric M. Schmidt, Mar 02 2013

Extensions

More terms from Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 09 2001
a(18)-a(56) from Stephen A. Silver, Feb 26 2013

A137316 Array read by rows: T(n,k) is the number of automorphisms of the k-th group of order n, where the ordering is such that the rows are nondecreasing.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 2, 6, 6, 4, 8, 8, 24, 168, 6, 48, 4, 20, 10, 4, 12, 12, 12, 24, 12, 6, 42, 8, 8, 16, 16, 16, 32, 32, 32, 32, 48, 64, 96, 192, 192, 20160, 16, 6, 12, 48, 54, 432, 18, 8, 20, 24, 40, 40, 12, 42, 10, 110, 22, 8, 16, 16, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 144, 336
Offset: 1

Views

Author

Benoit Jubin, Apr 06 2008, Apr 15 2008

Keywords

Comments

The length of the n-th row is A000001(n).
The largest value of the n-th row is A059773(n).
The number phi(n) = A000010(n) appears in the n-th row.

Examples

			The table begins as follows:
   1
   1
   2
   2   6
   4
   2   6
   6
   4   8   8  24 168
   6  48
   4  20
  10
   4  12  12  12  24
  12
   6  42
The first row with two numbers corresponds to the two groups of order 4, the cyclic group Z_4 and the Klein group Z_2 x Z_2, whose automorphism groups are respectively the group (Z_4)^* = Z_2 and the symmetric group S_3.
		

Crossrefs

Programs

  • GAP
    # GAP 4
    Print("\n") ;
    for o in [ 1 .. 33 ] do
        n := NumberSmallGroups(o) ;
        og := [] ;
        for i in [1 .. n] do
            g := SmallGroup(o,i) ;
            H := AutomorphismGroup(g) ;
            ho := Order(H) ;
            Add(og,ho) ;
        od;
        Sort(og) ;
        Print(og) ;
        Print("\n") ;
    od; # R. J. Mathar, Jul 13 2013

A138565 Array read by rows: T(n,k) is the number of automorphisms of the k-th Abelian group of order n, where the ordering is such that the rows are nondecreasing.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 2, 6, 4, 8, 168, 6, 48, 4, 10, 4, 12, 12, 6, 8, 8, 16, 96, 192, 20160, 16, 6, 48, 18, 8, 24, 12, 10, 22, 8, 16, 336, 20, 480, 12, 18, 108, 11232, 12, 36, 28, 8, 30, 16, 32, 128, 384, 1536, 21504, 9999360, 20, 16, 24, 12, 36, 96, 288, 36, 18, 24, 16, 32, 672
Offset: 1

Views

Author

Benoit Jubin, May 12 2008

Keywords

Comments

This is a subtable of A137316.
The length of the n-th row is A000688(n).
The largest value of the n-th row is A061350(n).
The number phi(n) = A000010(n) appears in the n-th row.
The number A064767(n) appears in the (n^3)-th row.
The number A062771(n) appears in the (2n)-th row.

Examples

			The table begins as follows:
1
1
2
2 6
4
2
6
4 8 168
6 48
4
10
4 12
The first row with two numbers corresponds to the two Abelian groups of order 4, the cyclic group C_4 and the Klein group C_2 x C_2, whose automorphism groups are respectively the group (C_4)^x = C_2 and the symmetric group S_3.
		

Programs

  • GAP
    Print("\n") ;
    for o in [ 1 .. 40 ] do
        n := NumberSmallGroups(o) ;
        og := [] ;
        for i in [1 .. n] do
            g := SmallGroup(o,i) ;
            if IsAbelian(g) then
                H := AutomorphismGroup(g) ;
                ho := Order(H) ;
                Add(og,ho) ;
            fi ;
        od;
        Sort(og) ;
        Print(og) ;
        Print("\n") ;
    od; # R. J. Mathar, Jul 13 2013
Showing 1-3 of 3 results.