cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061396 Number of "rooted index-functional forests" (Riffs) on n nodes. Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.

Original entry on oeis.org

1, 1, 2, 6, 20, 73, 281, 1124, 4618, 19387, 82765, 358245, 1568458, 6933765, 30907194, 138760603, 626898401, 2847946941, 13001772692, 59618918444, 274463781371, 1268064807409, 5877758070220, 27325789128330, 127384553264327, 595318139942874, 2788598203340643, 13090395266913748, 61571972632103632
Offset: 0

Views

Author

Jon Awbrey, Jun 09 2001

Keywords

Examples

			These structures come from recursive primes' factorizations of natural numbers, where the recursion proceeds on both the exponents (^k) and the indices (_k) of the primes invoked in the factorization:
2 = (prime_1)^1 = (p_1)^1, briefly, p, weight of 1 node => a(1) = 1.
3 = (prime_2)^1 = (p_2)^1, briefly, p_p, weight of 2 nodes and
4 = (prime_1)^2 = (p_1)^2, briefly, p^p, weight of 2 nodes => a(2) = 2.
		

References

  • J. Awbrey, personal journal, circa 1978. Letter to N. J. A. Sloane, 1980-Aug-04.
  • G. Balzarotti and P. P. Lava, 103 Curiosità Matematiche, Ulrico Hoepli, Milano, Italy, 2010, pp. 269-271.

Crossrefs

Programs

  • Maple
    a(0) := 1: for k from 1 to 30 do A := add(a(i)*x^i,i=0..k): B := mul((1+x^(j+1)*A)^a(j),j=0..k-1): a(k) := coeff(series(B,x,k+1),x,k): printf(`%d,`,a(k)); od:
  • Mathematica
    m = 30; a[0] = 1;
    Do[A[x_] = Product[(1+x^(j+1)*Sum[a[i]*x^i, {i, 0, k}])^a[j], {j, 0, k-1}]; a[k] = SeriesCoefficient[A[x], {x, 0, k}], {k, 1, m}];
    a /@ Range[0, m] (* Jean-François Alcover, Oct 19 2019 *)

Formula

G.f. A(x) = 1 + x + 2*x^2 + 6*x^3 + ... satisfies A(x) = Product_{j >= 0} (1 + x^(j+1)*A(x))^a_j.

Extensions

Corrected and extended with Maple program by Vladeta Jovovic and David W. Wilson, Jun 20 2001