A061418 a(n) = floor(a(n-1)*3/2) with a(1) = 2.
2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 141, 211, 316, 474, 711, 1066, 1599, 2398, 3597, 5395, 8092, 12138, 18207, 27310, 40965, 61447, 92170, 138255, 207382, 311073, 466609, 699913, 1049869, 1574803, 2362204, 3543306, 5314959, 7972438
Offset: 1
Examples
a(6) = floor(9*3/2) = 13.
Links
- Iain Fox, Table of n, a(n) for n = 1..1000 (first 500 terms from Harry J. Smith)
- Don Knuth, Ambidextrous Numbers, Preprint, September 2022.
- M. van de Vel, Determination of msd(L^n), J. Algebraic Combin. 9(2) (1999), 161-171. See Table 5. - _N. J. A. Sloane_, Mar 26 2012
- Mark van Wijk, The Quest for the Best Thread-Safe Java List, Univ. of Twente (Netherlands 2022).
- Wikipedia, Wallace tree.
Programs
-
Magma
[ n eq 1 select 2 else Floor(Self(n-1)*(3/2)): n in [1..39] ]; // Klaus Brockhaus, Nov 14 2008
-
PARI
{ a=4/3; for (n=1, 500, a=a*3\2; write("b061418.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 22 2009
-
PARI
first(n) = my(v=vector(n)); v[1]=2; for(i=2, n, v[i]=v[i-1]*3\2); v \\ Iain Fox, Jul 15 2022
-
Python
from itertools import islice def A061418_gen(): # generator of terms a = 2 while True: yield a a += a>>1 A061418_list = list(islice(A061418_gen(),70)) # Chai Wah Wu, Sep 20 2022
Formula
a(n) = A061419(n) + 1 = ceiling(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003
Comments