cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345669 Antidiagonal sums of array containing i-bonacci sequences nac(i,n), where nac(i,n) is the n-th i-bonacci number with nac(i,1..i) = 1 (see comments).

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 18, 31, 51, 89, 153, 273, 483, 870, 1571, 2860, 5225, 9603, 17711, 32805, 60967, 113685, 212610, 398723, 749615, 1412585, 2667549, 5047345, 9567527, 18166272, 34546857, 65793343, 125471295, 239584610, 458028439, 876628109, 1679581899
Offset: 1

Views

Author

Christoph B. Kassir, Jun 21 2021

Keywords

Comments

Antidiagonal sum of below array:
1, 1, 1, 1, 1, 1, ... (1-bonacci numbers)
1, 1, 2, 3, 5, 8, ... (2-bonacci or Fibonacci numbers)
1, 1, 1, 3, 5, 9, ... (3-bonacci or tribonacci numbers)
1, 1, 1, 1, 4, 7, ... (4-bonacci or tetranacci numbers)
...

Crossrefs

Programs

  • Maple
    b:= proc(i, n) option remember; `if`(n=0, 0,
          `if`(n<=i, 1, add(b(i, n-j), j=1..i)))
        end:
    a:= n-> add(b(i+1, n-i), i=0..n):
    seq(a(n), n=1..37);  # Alois P. Heinz, Jun 21 2021
  • Mathematica
    b[i_, n_] := b[i, n] = If[n == 0, 0, If[n <= i, 1, Sum[b[i, n - j], {j, 1, i}]]];
    a[n_] := Sum[b[i + 1, n - i], {i, 0, n}];
    Table[a[n], {n, 1, 37}] (* Jean-François Alcover, Dec 27 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{i=1..n} of nac(i,n-i+1) = Sum_{i=1..n} of nac(n-i+1,i).

A345372 a(n) = Sum_{i=1..n} nac(i,n) where nac(i,n) is the n-th i-bonacci number. The n-th i-bonacci number here is equal to 1 for the first i terms, with subsequent terms equaling the sum of the previous n terms.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 60, 114, 217, 411, 780, 1481, 2820, 5379, 10288, 19720, 37884, 72924, 140640, 271695, 525698, 1018611, 1976276, 3838889, 7465191, 14531683, 28313776, 55214993, 107762464, 210477611, 411387724, 804609206, 1574671586, 3083549861, 6041628460
Offset: 1

Views

Author

Christoph B. Kassir, Jun 16 2021

Keywords

Comments

a(n) is the sum of the first n elements of the n-th column of the following array:
1, 1, 1, 1, 1, ... (1-bonacci numbers)
1, 1, 2, 3, 5, ... (2-bonacci or Fibonacci numbers)
1, 1, 1, 3, 5, ... (3-bonacci or tribonacci numbers)
1, 1, 1, 1, 4, ... (4-bonacci or tetranacci numbers)
...
For n >= 3, this sequence is 2 + antidiagonal sums of A061451.

Crossrefs

Programs

  • Maple
    b:= proc(i, n) option remember; `if`(n=0, 0,
          `if`(n<=i, 1, add(b(i, n-j), j=1..i)))
        end:
    a:= n-> add(b(i, n), i=1..n):
    seq(a(n), n=1..36);  # Alois P. Heinz, Jun 16 2021
  • Mathematica
    b[i_, n_] := b[i, n] = If[n==0, 0,
         If[n<=i, 1, Sum[b[i, n-j], {j, 1, i}]]];
    a[n_] := Sum[b[i, n], {i, 1, n}];
    Table[a[n], {n, 1, 36}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{i=1..n} nac(i,n) where nac(i,n) = 1 if 1 <= n <= i, Sum_{k=1..i} nac(i,n-k) if n > i.
Showing 1-2 of 2 results.