A061493 Roman numerals written using 1 for I, 2 for V, 3 for X, 4 for L, 5 for C, 6 for D, 7 for M.
1, 11, 111, 12, 2, 21, 211, 2111, 13, 3, 31, 311, 3111, 312, 32, 321, 3211, 32111, 313, 33, 331, 3311, 33111, 3312, 332, 3321, 33211, 332111, 3313, 333, 3331, 33311, 333111, 33312, 3332, 33321, 333211, 3332111, 33313, 34, 341, 3411, 34111, 3412
Offset: 1
Examples
a(14) = 312 because 14 = XIV in Roman, and I,V,X are coded as 1,2,3 respectively. a(66) = 4321, LXVI is 50+10+5+1 = 66, a(44) = 3412, XLIV is -10+50-1+5 = 44
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..3999
- Gerard Schildberger, The first 3999 numbers in Roman numerals
- Eric Weisstein's World of Mathematics, Roman Numerals
- Wikipedia, Roman numerals
- Wikipedia, 0 (number) in classical antiquity
Crossrefs
Programs
-
Haskell
a061493 n = read $ r 1 [] n :: Integer where r _ roms 0 = roms r p roms z = case p of 1 -> r 2 (d '1' '2' '3' m) z' 2 -> r 3 (d '3' '4' '5' m ++ roms) z' 3 -> r 4 (d '5' '6' '7' m ++ roms) z' 4 -> replicate z '7' ++ roms where (z',m) = divMod z 10 d i j k c = [[],[i],[i,i],[i,i,i],[i,j],[j],[j,i],[j,i,i],[j,i,i,i],[i,k]] !! c -- Reinhard Zumkeller, Apr 14 2013
-
Mathematica
Array[FromDigits[Characters@ RomanNumeral[#] /. {"I" -> 1, "V" -> 2, "X" -> 3, "L" -> 4, "C" -> 5, "D" -> 6, "M" -> 7}] &, 44] (* Michael De Vlieger, May 01 2021 *)
-
PARI
{A061493(n,s="",c=[1000,7,900,57,500,6,400,56,100,5,90,35,50,4,40,34,10,3,9,13,5,2,4,12,1,1])= forstep(i=1,#c,2,while(n>=c[i],n-=c[i];s=Str(s,c[i+1])));eval(s)} \\ M. F. Hasler, Jan 11 2015
-
Python
def f(s, k): return s[:2] if k==4 else (s[1]*(k>=5)+s[0]*(k%5) if k<9 else s[0]+s[2]) def a(n): m, c, x, i = n//1000, (n%1000)//100, (n%100)//10, n%10 return int("7"*m + f("567", c) + f("345", x) + f("123", i)) print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Aug 24 2022
-
Python
import roman def A061493(n, d={ord(c):str(i) for i,c in enumerate("NIVXLCDM")}): return int(roman.toRoman(n).translate(d)) # M. F. Hasler, Aug 16 2025
Formula
a(n)=i <=> A003587(i)=n, for i in {1,...,7}, i.e., A061493 is a left inverse of A003587 on {1,...,7}. - M. F. Hasler, Jan 12 2015
Extensions
0 removed again by Georg Fischer, Jan 20 2019
Comments