A006968 Number of letters in Roman numeral representation of n.
1, 2, 3, 2, 1, 2, 3, 4, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 4, 3, 4, 5, 6, 5, 4, 5, 6, 7, 5, 2, 3, 4, 5, 4, 3, 4, 5, 6, 4, 1, 2, 3, 4, 3, 2, 3, 4, 5, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 4, 3, 4, 5, 6, 5, 4, 5, 6, 7, 5, 4, 5, 6, 7, 6, 5, 6, 7, 8, 6, 2, 3, 4, 5, 4, 3, 4, 5, 6, 4, 1, 2, 3, 4, 3, 2
Offset: 1
References
- GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 60.
- Netnews group rec.puzzles, Frequently Asked Questions (FAQ) file. (Science Section).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..3999
- Rec.puzzles, Archive
- Gerard Schildberger, The first 3999 numbers in Roman numerals
- Eric Weisstein's World of Mathematics, Roman Numerals
- Wikipedia, Roman numerals
- Index entries for sequences related to number of letters in n
Crossrefs
Programs
-
Haskell
a006968 = lenRom 3 where lenRom 0 z = z lenRom p z = [0, 1, 2, 3, 2, 1, 2, 3, 4, 2] !! m + lenRom (p - 1) z' where (z',m) = divMod z 10 -- Reinhard Zumkeller, Apr 14 2013
-
Maple
A006968 := proc(n) return length(convert(n,roman)): end: seq(A006968(n),n=1..105); # Nathaniel Johnston, May 18 2011
-
Mathematica
a[n_] := StringLength[ IntegerString[ n, "Roman"]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Dec 27 2011 *)
-
PARI
A006968(n)=#Str(A061493(n)) \\ M. F. Hasler, Jan 11 2015
-
Python
def f(s, k): return s[:2] if k==4 else (s[1]*(k>=5)+s[0]*(k%5) if k<9 else s[0]+s[2]) def a(n): m, c, x, i = n//1000, (n%1000)//100, (n%100)//10, n%10 return len("M"*m + f("CDM", c) + f("XLC", x) + f("IVX", i)) print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Mar 03 2024
-
Python
import roman def A006968(n): return len(roman.toRoman(n)) # M. F. Hasler, Aug 18 2025
-
R
nchar(paste(as.roman(1 :1024))) # N. J. A. Sloane, Aug 23 2009, corrected by M. F. Hasler, Aug 18 2025
Extensions
More terms from Eric W. Weisstein
Comments