cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061509 Write n in decimal, omit 0's, replace the k-th digit d[k] with the k-th prime, raised to d[k]-th power and multiply.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 16, 48, 144, 432, 1296, 3888, 11664, 34992, 104976, 314928
Offset: 0

Views

Author

Amarnath Murthy, May 06 2001

Keywords

Comments

Not the same as A189398: see formula.

Examples

			a(4) = 2^4 = 16, a(123) = (2^1)*(3^2)*(5^3) = 2250.
For n = 0, the list of nonzero digits is empty, and the empty product equals 1.
		

Crossrefs

Programs

  • Haskell
    a061509 n = product $ zipWith (^)
      a000040_list (map digitToInt $ filter (/= '0') $ show n)
    -- Reinhard Zumkeller, May 03 2011
    
  • Mathematica
    A061509[n_] := If[n == 0, 1, Times @@ (Prime[Range[Length[#]]]^#) & [DeleteCases[IntegerDigits[n], 0]]];
    Array[A061509, 100, 0] (* Paolo Xausa, Nov 26 2024 *)
  • PARI
    A061509(n)=prod(k=1,#n=select(t->t,digits(n)),prime(k)^n[k]) \\ M. F. Hasler, Aug 16 2014

Formula

a(n) = a(n*10^k). a((10^k-1)/9) = primorial(k) = A002110(k).
a(n) = A189398(n) for n <= 100; a(101)=2^1*3^1 = 6 <> A189398(101) = 2^1*3^0*5^1 = 10; a(A052382(n)) = A189398(A052382(n)); a(n) = A000079(A000030(n)) if n has only one nonzero digit; A001221(a(n)) = A055640(n); A001222(a(n)) = A007953(n). - Reinhard Zumkeller, May 03 2011
If n=d[1]d[2]...d[m] in decimal (0M. F. Hasler, Aug 16 2014
A007814(a(n)) = A000030(n). - M. F. Hasler, Aug 18 2014

Extensions

Corrected and extended by Matthew Conroy, May 13 2001
Offset corrected by Reinhard Zumkeller, May 03 2011
Definition corrected by M. F. Hasler, Aug 16 2014
Extended to a(0) = 1 by M. F. Hasler, Oct 12 2018