cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085940 After correction, duplicate of A061509.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 4
Offset: 0

Views

Author

Keywords

A054842 If n = a + 10 * b + 100 * c + 1000 * d + ... then a(n) = (2^a) * (3^b) * (5^c) * (7^d) * ...

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 27, 54, 108, 216, 432, 864, 1728, 3456, 6912, 13824, 81, 162, 324, 648, 1296, 2592, 5184, 10368, 20736, 41472, 243, 486, 972, 1944
Offset: 0

Views

Author

Henry Bottomley, Apr 11 2000

Keywords

Comments

a((10^k-1)/9) = Primorial(k)= A061509((10^k-1)/9). This is a rearrangement of whole numbers. a(m) = a(n) iff m = n. (Unlike A061509, in which a(n) = a(n*10^k).) - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 14 2003
Part of the previous comment is incorrect: as a set, this sequence consists of numbers n such that the largest exponent appearing in the prime factorization of n is 9. So this cannot be a rearrangement (or permutation) of the natural numbers. - Tom Edgar, Oct 20 2015

Examples

			a(15)=96 because 3^1 * 2^5 = 3*32 = 96.
		

Crossrefs

Cf. analogous sequences for other bases: A019565 (base 2), A101278 (base 3), A101942 (base 4), A101943 (base 5), A276076 (factorial base), A276086 (primorial base).

Programs

  • Haskell
    a054842 = f a000040_list 1 where
       f _      y 0 = y
       f (p:ps) y x = f ps (y * p ^ d) x'  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Aug 03 2015
    
  • Mathematica
    A054842[n_] := Times @@ (Prime[Range[Length[#], 1, -1]]^#) & [IntegerDigits[n]];
    Array[A054842, 100, 0] (* Paolo Xausa, Nov 25 2024 *)
  • PARI
    a(n)= my(d=Vecrev(digits(n))); factorback(primes(#d), d); \\ Ruud H.G. van Tol, Nov 28 2024

Formula

a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/10), y*prime(z)^(x mod 10), z+1) else y. - Reinhard Zumkeller, Mar 13 2010

A069877 Smallest number with a prime signature whose indices are the decimal digits of n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 4, 12, 36, 72, 144, 288, 576, 1152, 2304, 4608, 8, 24, 72, 216, 432, 864, 1728, 3456, 6912, 13824, 16, 48, 144, 432, 1296, 2592, 5184, 10368, 20736, 41472, 32, 96, 288, 864, 2592, 7776, 15552, 31104, 62208, 124416, 64, 192, 576, 1728, 5184, 15552, 46656, 93312, 186624, 373248, 128
Offset: 0

Views

Author

Amarnath Murthy, Apr 25 2002

Keywords

Comments

From Antti Karttunen, Nov 17 2016: (Start)
This is a filter-sequence for decimal base: a(n) = the least number with the same prime signature as A054842(n).
This sequence can be used for filtering certain base-10 related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A054842(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Any such sequence should match where the result is computed from the nonzero decimal digits of n, but does not depend on their order. These include for example, A007953 (digital sum and any of its variants), A010888 (digital root of n) and A051801 (product of the nonzero digits of n). As of Nov 11 2016, there were a couple of hundred such sequences that seemed to match with this one. These are given at the "List of sequences whose equivalence classes ..." link.
(End)

Examples

			a(12) = 2^2 * 3^1 = 12. a(231) = 2^3 * 3^2 * 5^1 = 360.
		

Crossrefs

Cf. A278222, A278226, A278236 for similar filter sequences constructed for other bases.
Sequences that partition N into same or coarser equivalence classes: too numerous to list all here, but at least A007953, A010888, A051801 are included. See the separate list given in links.

Formula

a(n) = A046523(A054842(n)). - Antti Karttunen, Nov 16 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 05 2002
a(0)=1 prepended and more terms added by Antti Karttunen, Nov 16 2016

A189398 a(n) = 2^d(1) * 3^d(2) * ... * prime(k)^d(k), where d(1)d(2)...d(k) is the decimal representation of n.

Original entry on oeis.org

2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 16, 48, 144, 432, 1296, 3888, 11664, 34992, 104976, 314928, 32
Offset: 1

Views

Author

Reinhard Zumkeller, May 03 2011

Keywords

Comments

Not the same as A061509: a(n) = A061509(n) for n <= 100; a(101)=2^1*3^0*5^1=10 <> A061509(101)=2^1*3^1=6;
a(A052382(n)) = A000079(A000030(a052382(n))) = A061509(A052382(n));
a(A002275(n)) = A002110(n): a(n-th rep-unit) = n-th primorial;
a(n*A011557(k)) = a(n): trailing zeros don't matter;
A001221(a(n)) = A055640(n): number of distinct prime factors of a(n) = number of nonzero digits of n;
A001222(a(n)) = A007953(n): number of all prime factors of a(n) = sum of digits of n;
a(81312000) = 2^8*3^1*5^3*7^1*11^2*13^0*17^0*19^0 = 81312000, the smallest fixed point, is called the Meertens number.

Crossrefs

Cf. A000040.

Programs

  • Haskell
    import Data.Char (digitToInt)
    import Data.List (findIndices)
    a189398 n = product $ zipWith (^) a000040_list (map digitToInt $ show n)
    -- Two computations of the Meertens number: the first is brute force,
    meertens = map succ $ findIndices (\x -> a189398 x == x) [1..]
    -- ... and the second is more efficient, from Bird reference, page 87:
    meertens' k = [n | (n,g) <- candidates (0,1), n == g] where
      candidates        = concat . map (search pps) . tail . labels ps
      ps : pps          = map (\p -> iterate (p *) 1) $ take k a000040_list
      search [] x       = [x]
      search (ps:pps) x = x : concat (map (search pps) (labels ps x))
      labels ps (n,g)   = zip (map (10*n +) [0..9]) (chop $ map (g *) ps)
      chop              = takeWhile (< 10^k)
    -- Time and space required, GHC interpreted, Mac OS X, 2.66 GHz:
    -- for >head meertens: (466.87 secs, 254780027728 bytes);
    -- for >meertens' 8:   (  0.28 secs,     62027124 bytes).
    
  • Maple
    a:= n-> `if`(n=0, 1, ithprime(length(n))^irem(n, 10, 'm') *a(m)):
    seq(a(n), n=1..110);  # Alois P. Heinz, May 04 2011
  • Mathematica
    a[n_] := (p = Prime[Range[Length[d = IntegerDigits[n]]]]; Times @@ (p^d)); Array[a, 50] (* Jean-François Alcover, Jan 09 2016 *)
  • PARI
    a(n)=my(d=digits(n),p=primes(#d)); prod(i=1,#d,p[i]^d[i]) \\ Charles R Greathouse IV, Aug 19 2014
    
  • Python
    from sympy import prime
    from operator import mul
    from functools import reduce
    def A189398(n):
        return reduce(mul, (prime(i)**int(d) for i,d in enumerate(str(n),start=1)))
    # Chai Wah Wu, Aug 31 2014
    
  • Python
    # implementation using recursion
    from sympy import prime
    def _A189398(n):
        nlen = len(n)
        return _A189398(n[:-1])*prime(nlen)**int(n[-1]) if nlen > 1 else 2**int(n)
    def A189398(n):
        return _A189398(str(n))
    # Chai Wah Wu, Aug 31 2014

A061510 Write n in decimal, omit 0's, raise each digit k to k-th power and multiply.

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 4, 4, 16, 108, 1024, 12500, 186624, 3294172, 67108864, 1549681956, 27, 27, 108, 729, 6912, 84375, 1259712, 22235661, 452984832, 10460353203
Offset: 0

Views

Author

Amarnath Murthy, May 06 2001

Keywords

Comments

The empty product is 1. If one accepts 0^0 = 1, then "omit 0's" is unnecessary. - Michael S. Branicky, Nov 26 2024

Examples

			a(4) = 4^4 = 256.
a(123) =  1^1 * 2^2 * 3^3 = 108.
a(1024) = 1^1 * 2^2 * 4^4 = 1024.
		

Crossrefs

Cf. A061509.

Programs

  • Maple
    a:= n-> mul(i^i,i=convert(n, base, 10)):
    seq(a(n), n=0..39);  # Alois P. Heinz, Nov 26 2024
  • Mathematica
    A061510[n_] := If[n == 0, 1, Times @@ (#^#) & [DeleteCases[IntegerDigits[n], 0]]];
    Array[A061510, 50, 0] (* Paolo Xausa, Nov 26 2024 *)
  • PARI
    a(n) = my(d=digits(n)); vecprod(vector(#d, k, d[k]^d[k])); \\ Michel Marcus, Nov 25 2024
  • Python
    from math import prod
    def a(n): return prod(d**d for d in map(int, str(n)) if d > 1)
    print([a(n) for n in range(40)]) # Michael S. Branicky, Nov 25 2024
    

Extensions

Corrected and extended by Matthew Conroy, May 13 2001
Showing 1-5 of 5 results.