cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A061509 Write n in decimal, omit 0's, replace the k-th digit d[k] with the k-th prime, raised to d[k]-th power and multiply.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 16, 48, 144, 432, 1296, 3888, 11664, 34992, 104976, 314928
Offset: 0

Views

Author

Amarnath Murthy, May 06 2001

Keywords

Comments

Not the same as A189398: see formula.

Examples

			a(4) = 2^4 = 16, a(123) = (2^1)*(3^2)*(5^3) = 2250.
For n = 0, the list of nonzero digits is empty, and the empty product equals 1.
		

Crossrefs

Programs

  • Haskell
    a061509 n = product $ zipWith (^)
      a000040_list (map digitToInt $ filter (/= '0') $ show n)
    -- Reinhard Zumkeller, May 03 2011
    
  • Mathematica
    A061509[n_] := If[n == 0, 1, Times @@ (Prime[Range[Length[#]]]^#) & [DeleteCases[IntegerDigits[n], 0]]];
    Array[A061509, 100, 0] (* Paolo Xausa, Nov 26 2024 *)
  • PARI
    A061509(n)=prod(k=1,#n=select(t->t,digits(n)),prime(k)^n[k]) \\ M. F. Hasler, Aug 16 2014

Formula

a(n) = a(n*10^k). a((10^k-1)/9) = primorial(k) = A002110(k).
a(n) = A189398(n) for n <= 100; a(101)=2^1*3^1 = 6 <> A189398(101) = 2^1*3^0*5^1 = 10; a(A052382(n)) = A189398(A052382(n)); a(n) = A000079(A000030(n)) if n has only one nonzero digit; A001221(a(n)) = A055640(n); A001222(a(n)) = A007953(n). - Reinhard Zumkeller, May 03 2011
If n=d[1]d[2]...d[m] in decimal (0M. F. Hasler, Aug 16 2014
A007814(a(n)) = A000030(n). - M. F. Hasler, Aug 18 2014

Extensions

Corrected and extended by Matthew Conroy, May 13 2001
Offset corrected by Reinhard Zumkeller, May 03 2011
Definition corrected by M. F. Hasler, Aug 16 2014
Extended to a(0) = 1 by M. F. Hasler, Oct 12 2018

A246468 Given a number of k digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1), consider y = p_(1)^d_(1)*p_(2)^d_(2)*…*p_(k)^d_(k), where p_(i) is the i-th prime. Sequence lists the numbers x such that y / x is an integer.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 36, 48, 54, 81, 96, 128, 135, 144, 162, 225, 288, 375, 486, 576, 625, 648, 675, 768, 972, 1296, 1575, 1875, 2187, 2268, 2625, 2646, 2688, 3087, 3136, 3375, 3528, 3675, 3888, 3969, 4116, 4374, 4802, 5145, 5292, 5488, 5625, 6048, 6174, 7056
Offset: 1

Views

Author

Paolo P. Lava, Aug 27 2014

Keywords

Comments

a(n) = x such that A054842(x)/x is an integer.

Examples

			x = 48 -> y = 2^8*3^4 = 20736 and 20736 / 48 = 432.
x = 972 -> y = 2^2*3^7*5^9 = 17085937500 and 17085937500 / 972 = 17578125.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=n; b:=1;
    for k from 1 to ilog10(n)+1 do b:=b*ithprime(k)^(a mod 10); a:=trunc(a/10);
    od; if type(b/n,integer) then print(n); fi; od; end: P(10^9);

A246469 Given a number of k digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1), consider y = p_(1)^d_(k)*p_(2)^d_(k-1)*…*p_(k)^d_(1), where p_(i) is the i-th prime. Sequence lists the numbers x such that y / x is an integer.

Original entry on oeis.org

1, 2, 4, 8, 18, 27, 36, 48, 54, 64, 72, 96, 125, 135, 162, 225, 375, 432, 486, 625, 648, 675, 864, 972, 1225, 1250, 1323, 1350, 1575, 1701, 1715, 1875, 2250, 2646, 2835, 2916, 3375, 3528, 3645, 3675, 3750, 3969, 4116, 4375, 4536, 4725, 4860, 5145, 5488, 5832
Offset: 1

Views

Author

Paolo P. Lava, Aug 27 2014

Keywords

Comments

a(n) = x such that A189398(x) / x is an integer.

Examples

			x = 48 -> y = 2^4*3^8 = 104976 and 104976 / 48 = 2187.
x = 972 -> y = 2^9*3^7*5^2 = 27993600 and 27993600 / 972 = 28800.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=n; b:=1;
    for k from 1 to ilog10(n)+1 do b:=b*ithprime(ilog10(n)+2-k)^(a mod 10); a:=trunc(a/10);
    od; if type(b/n,integer) then print(n); fi; od; end: P(10^9);

A246532 Smallest Meertens number in base n, or -1 if none exists.

Original entry on oeis.org

2, 10, 200, 6, 54, 100, 216, 4199040, 81312000
Offset: 2

Views

Author

David Applegate, Aug 28 2014

Keywords

Comments

A Meertens number in base n is a fixed point of the base n Godel encoding.
The base n Godel encoding of x is 2^d(1) * 3^d(2) * ... * prime(k)^d(k), where d(1)d(2)...d(k) is the base n representation of x.
a(14) = 47250, a(16) = 18.
In a computer search that included all numbers < 10^29 and bases <= 16, the only additional Meertens numbers found were 6 (base 2), 10 (base 2), 49000 (base 5), and 181400 (base 5).
There is no base 11 Meertens number < 11^44 ~= 6.6*10^45.
There is no base 12 Meertens number < 12^40 ~= 1.4*10^43.
There is no base 13 Meertens number < 13^39 ~= 2.7*10^43.
There is no base 15 Meertens number < 15^37 ~= 3.2*10^43.
Other terms: a(17) = 36, a(19) = 96, a(32) = 256, a(51) = 54. - Chai Wah Wu, Aug 28 2014
From Chai Wah Wu, Jul 20 2020: (Start)
All terms are even.
If n > 2 and a(n) != -1, then a(n) > n.
a(2*3^m-m) = 2*3^m for all m >= 0, i.e., a(n) > 0 for an infinite number of values of n.
Other terms: a(64) = a(4096) = 65536, a(71) = 216, a(160) = 324, a(323) = 1296, a(1455) = 2916, a(1942) = 5832, a(7775) = 46656, a(8294) = 82944, a(13118) = 26244.
(End)
Named by Bird (1998) after the Dutch computer scientist Lambert Meertens (b. 1944). - Amiram Eldar, Jun 23 2021
a(10) = 81312000 is the only base-10 Meertens number below 10^50. - Max Alekseyev, Jul 24 2024

Examples

			100 is a base 7 Meertens number because 100 = 202_7 = 2^2 * 3^0 * 5^2.
4199040 is a base 9 Meertens number because 4199040 = 7810000_9 = 2^7 * 3^8 * 5^1.
		

Crossrefs

Cf. A189398 (base 10 Godel encoding), A110765 (base 2 Godel encoding).

Extensions

Conjectural terms removed from the sequence by Max Alekseyev, Jul 22 2024

A270142 a(n) = product of first k composites, with the i-th composite raised to the d-th power, where k = A055642(n) and d is the i-th digit of n.

Original entry on oeis.org

4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 4, 24, 144, 864, 5184, 31104, 186624, 1119744, 6718464, 40310784, 16, 96, 576, 3456, 20736, 124416, 746496, 4478976, 26873856, 161243136, 64, 384, 2304, 13824, 82944, 497664, 2985984, 17915904, 107495424
Offset: 1

Views

Author

Felix Fröhlich, Mar 12 2016

Keywords

Comments

All terms are multiples of 4, since A002808(1) = 4 and the most significant digit of n is always nonzero.
Does a term exist such that a(n) = n? Such a number would be the analog of a Meertens number when raising composites to the powers of the digits of n instead of raising primes to the powers of the digits.
From Chai Wah Wu, Dec 15 2022: (Start)
If a(n) is defined using digits of n in base b, then there are bases b and numbers n such that a(n) = n. For instance:
base b n
------------------------------------------------
2 4, 24, 36, 24192000, 85155840
3 2592
4 4, 103680
6 20736
8 16, 256, 13824
12 1327104
16 21233664
23 24
24 746496
(End)

Examples

			a(12) = 144, since A002808(1) = 4, A002808(2) = 6 and 4^1 * 6^2 = 144.
		

Crossrefs

Programs

  • PARI
    composite(n) = my(i=0, c=2); while(1, if(!ispseudoprime(c), i++); if(i==n, return(c)); c++)
    compopowerprod(n) = my(d=digits(n)); for(k=1, #d, p=prod(i=1, #d, composite(i)^d[i])); p
    a(n) = compopowerprod(n)
    
  • Python
    from math import prod
    from sympy import composite
    def A270142(n): return prod(composite(i)**int(d) for i, d in enumerate(str(n),1)) # Chai Wah Wu, Dec 09 2022
Showing 1-5 of 5 results.