cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061509 Write n in decimal, omit 0's, replace the k-th digit d[k] with the k-th prime, raised to d[k]-th power and multiply.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 16, 48, 144, 432, 1296, 3888, 11664, 34992, 104976, 314928
Offset: 0

Views

Author

Amarnath Murthy, May 06 2001

Keywords

Comments

Not the same as A189398: see formula.

Examples

			a(4) = 2^4 = 16, a(123) = (2^1)*(3^2)*(5^3) = 2250.
For n = 0, the list of nonzero digits is empty, and the empty product equals 1.
		

Crossrefs

Programs

  • Haskell
    a061509 n = product $ zipWith (^)
      a000040_list (map digitToInt $ filter (/= '0') $ show n)
    -- Reinhard Zumkeller, May 03 2011
    
  • Mathematica
    A061509[n_] := If[n == 0, 1, Times @@ (Prime[Range[Length[#]]]^#) & [DeleteCases[IntegerDigits[n], 0]]];
    Array[A061509, 100, 0] (* Paolo Xausa, Nov 26 2024 *)
  • PARI
    A061509(n)=prod(k=1,#n=select(t->t,digits(n)),prime(k)^n[k]) \\ M. F. Hasler, Aug 16 2014

Formula

a(n) = a(n*10^k). a((10^k-1)/9) = primorial(k) = A002110(k).
a(n) = A189398(n) for n <= 100; a(101)=2^1*3^1 = 6 <> A189398(101) = 2^1*3^0*5^1 = 10; a(A052382(n)) = A189398(A052382(n)); a(n) = A000079(A000030(n)) if n has only one nonzero digit; A001221(a(n)) = A055640(n); A001222(a(n)) = A007953(n). - Reinhard Zumkeller, May 03 2011
If n=d[1]d[2]...d[m] in decimal (0M. F. Hasler, Aug 16 2014
A007814(a(n)) = A000030(n). - M. F. Hasler, Aug 18 2014

Extensions

Corrected and extended by Matthew Conroy, May 13 2001
Offset corrected by Reinhard Zumkeller, May 03 2011
Definition corrected by M. F. Hasler, Aug 16 2014
Extended to a(0) = 1 by M. F. Hasler, Oct 12 2018

A334828 Numbers that divide the multiplication of its digits raised to their own powers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 25, 36, 64, 96, 125, 128, 135, 162, 175, 216, 250, 256, 375, 378, 384, 432, 486, 567, 576, 625, 648, 672, 675, 729, 735, 756, 768, 784, 864, 875, 972, 1024, 1176, 1250, 1296, 1372, 1715, 1764, 1944, 2048, 2304, 2500, 2744, 2916, 3087, 3125, 3375, 3456, 3645, 3675, 4096
Offset: 1

Views

Author

Scott R. Shannon, May 13 2020

Keywords

Comments

As in A045503 we take 0^0 = 1.
Numbers m that divide A061510(m).

Examples

			5 is a term as 5^5 = 3125 which is divisible by 5.
16 is a term as 1^1*6^6 = 46656 which is divisible by 16.
375 is a term as 3^3*7^7*5^5 = 69486440625 which is divisible by 375.
1176 is a term as 1^1*1^1*7^7*6^6 = 38423222208 which is divisible by 1176.
		

Crossrefs

Programs

  • Mathematica
    pow[n_] := If[n == 0, 1, n^n]; Select[Range[2^12], Divisible[Times @@ (pow /@ IntegerDigits[#]), #] &] (* Amiram Eldar, May 13 2020 *)
  • PARI
    isok(m) = my(d=digits(m)); (prod(k=1, #d, d[k]^d[k]) % m) == 0; \\ Michel Marcus, May 14 2020

A378246 Integers that are equal to the product of their nonzero digits raised to their own power.

Original entry on oeis.org

1, 1024, 12500
Offset: 1

Views

Author

Jason Hammerman, Nov 20 2024

Keywords

Comments

If one accepts 0^0 = 1, the "nonzero" part of the description is unnecessary.
From Michael S. Branicky, Nov 25 2024: (Start)
Terms must be 7-smooth (A002473).
a(4) > 10^200 if it exists. (End)

Examples

			1024  = 1^1 * 2^2 * 4^4.
12500 = 1^1 * 2^2 * 5^5.
		

Crossrefs

Fixed points of A061510.
Inspired by A046253.
Cf. A002473.

Programs

  • Mathematica
    F[a_]:=If[a==0,1,a^a];Select[Range[10^5],#==Times@@F/@IntegerDigits[#]&] (* James C. McMahon, Dec 14 2024 *)
  • PARI
    isok(k) = my(d=digits(k)); k == vecprod(vector(#d, i, d[i]^d[i])); \\ Michel Marcus, Nov 22 2024
  • Python
    # See Python program link.
    
  • Python
    from math import prod
    def ok(n): return n == prod(d**d for d in map(int, str(n)) if d > 1)
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Nov 24 2024
    
Showing 1-3 of 3 results.